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Course Goals

■ Solid understanding of types of neural networks (forward and
backward modes) and their strengths and weaknesses
» Feed-forward
» Recurrent
» Convolutional

■ Fundamental knowledge of the deep learning stack
» Frameworks – especially automatic differentiation (AD), the

powerful technique at the heart of most deep learning frameworks
» Hardware – from data center to low-power, mobile environment

■ Awareness of current research directions, limitations
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Milestones

■ Nine assignments
1. Self assessment (not graded)
2. Perceptrons
3. Multi-layer Neural Networks
4. Automatic Differentiation
5. Optimization
6. Regularization
7. Recurrent Networks
8. Convolutional Networks
9. Compilers

■ Mid-term exam
■ Final exam
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Grading

Category Weight Purpose
Participation 10% Clarify or reinforce concepts, help peers
Assignments 25% Reinforce concepts, help peers
Midterm exam 30% Demonstrate mastery of concepts
Final exam 35% Demonstrate mastery of concepts
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Instructor Background
Natural Language Processing Computer Vision

■ Automated scoring of writing
for educational assessments

■ Many tasks, many models,
many datasets of varying sizes

■ Feature engineering and
feature learning, “wide and
deep”

■ Convolutional networks for
error correction (CU thesis,
2016)

■ Object detection for
automated construction of
maps for automated driving

■ Heavy use of convolutional
neural networks

■ Feature learning only
■ Focus on trade-off between

accuracy and speed for mobile
deployment
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Correcting Writing Errors

■ In writing assessments, error correction performance
requirements are high

■ Interactive, formative setting
» User submits example of writing
» System response identifies errors, returns ranked candidate lists of

corrections
» =⇒ ~95% rank-5 accuracy

■ Automatic, summative setting
» User submits example of writing
» Rubric says to ignore errors in spelling, grammar
» System automatically replaces each error with first element of

ranked candidate list
» System scores corrected writing, returns score
» =⇒ ~99% rank-1 accuracy
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Proposed Approach

■ Augment data by learning generative model of non-words
» Curated error+correction corpora (smaller N, V)
» Generated error+correction corpora (larger N, V)
» Wikipedia

■ Use convolutional neural networks (ConvNets)
» Ensemble of n-gram feature detectors
» Well-suited to correction of single-word errors

■ Systematically evaluate ConvNets on canonical error
detection/correction tasks.
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Data Sets: Curated Non-word Corpora

Corpus Errors |V |
Aspell 531 450

Birbeck 36133 6136
Holbrook 1771 1199

Wikipedia 2455 1922
Table 1: Available from http://www.dcs.bbk.ac.uk/~roger/

http://www.dcs.bbk.ac.uk/~roger/
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Data Sets: Generated Non-word Corpora

Edit Probability Non-word
ri → r 0.18 brck
i → e 0.15 breck

ic → is 0.14 brisk
ri → re 0.13 breck
c → s 0.10 brisk
ic → i 0.10 brik
ri → ry 0.06 bryck
ri → ra 0.06 brack
ck → c 0.04 bric
c → co 0.04 bricok

Table 2: Creating non-words from “brick” by sampling transformations
with probability proportional to their frequency in curated corpora.
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Random Forest RANK

Inputs Description
All candidates. Length of candidate list.
Candidate only. Unigram probability (Google 1TB 5-gram Corpus).

Non-word and
candidate,
separately.

Length of string.
Number of consonants, vowels, or capitals in string.
Whether string contains space.
Bag-of-words bigrams of string.

Tuple of non-word
and candidate.

Levenshtein of strings or phonetic encodings.
Damerau-Levenshtein of strings or phonetic encodings.
Hamming of strings or phonetic encodings.
Jaro of strings or phonetic encodings.
Jaro-Winkler of strings or phonetic encodings.

Table 3: Feature set of Random Forest RANK model.
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Corpus Rank Jaro-Winkler ConvNet Random Forest
Aspell 1 0.43 0.48 0.64
Aspell 2 0.58 0.66 0.73
Aspell 3 0.70 0.73 0.78
Aspell 4 0.77 0.77 0.79
Aspell 5 0.81 0.80 0.80

Birbeck 1 0.28 0.30 0.39
Birbeck 2 0.40 0.44 0.46
Birbeck 3 0.48 0.50 0.50
Birbeck 4 0.52 0.53 0.52
Birbeck 5 0.56 0.55 0.54

Holbrook 1 0.22 0.18 0.36
Holbrook 2 0.34 0.27 0.45
Holbrook 3 0.42 0.33 0.50
Holbrook 4 0.48 0.38 0.52
Holbrook 5 0.52 0.42 0.53

Wikipedia 1 0.67 0.72 0.82
Wikipedia 2 0.77 0.85 0.90
Wikipedia 3 0.87 0.89 0.92
Wikipedia 4 0.92 0.91 0.93
Wikipedia 5 0.94 0.92 0.94
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Context-dependent Non-word Correction Models

■ 1-4 Gram language model
» Google Web 1T 5-gram Corpus
» Good-Turing discounting
» Backoff

■ Feed-forward Word Embedding Network
■ Word ConvNet
■ Word and Character ConvNet (with N (0, σ) added to

non-word)
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Feed-forward Word Embedding Block
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Figure 1: Window of 5 words centered on error, with non-word replaced
by candidate. Word embeddings are 200 dimensions (=1000-dimensional
input to fully-connected layer).
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Word Convolutional Block
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Figure 2: Window of 5 words centered on error, with non-word replaced
by candidate. Filters are width 5; there are 1000 of them
(=1000-dimensional input to fully-connected layer).
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Character Convolutional Block
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Figure 3: This block has 100 filters of width 3 (=200-dimensional input
to fully-connected layer, 100 for non-word, 100 for candidate). It is
applied separately to the non-word and the candidate word. A sample
from N (0, σ) is added to the non-word after the convolutional operation.
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RANK
σ2 1 2 3
.00 .93 .98 .99
.01 .93 .98 .99
.02 .95 .99 .99
.03 .95 .99 .99
.04 .95 .99 .99
.05 .95 .99 .99
.06 .95 .99 .99
.07 .94 .99 .99
.08 .94 .99 .99
.09 .93 .98 .99
.10 .95 .99 .99

Table 4: Effect of varying the noise N (0, σ2) with which the Word and
Character ConvNet was trained.
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Real Word Error Correction

Figure 4: Relative frequencies of 10 prepositions. Our confusion set
consists of all but the least frequent, “about”.
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Contrasting Cases

Sentence Target
This is justified on policy grounds. on
This is justified for policy grounds. on

Table 5: Training with contrasting cases prevents the trivial solution and
forces the model to focus on the context of the preposition.
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Human Judgments

A1 A2 A3 A4
A2 .83 . . .
A3 .72 .79 . .
A4 .70 .79 .77 .
ConvNet .75 .78 .76 .75

Table 6: Cohen’s κ of human annotators (A1-A4) and the ConvNet on
Wikipedia test set examples. N ∼ 175 for annotator-annotator κ,
N = 500 for annotator-ConvNet κ.
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HERE™ HD Live Map

Autonomous vehicles require very high accuracy (HD) maps that
are updated frequently (Live).
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Basic Strategy

1. Collect rich data with vehicles equipped with a variety of
sensors, including inertial measurement unit (IMU), global
navigation satellite system (GNSS), 4-perspective camera, and
LiDAR.

2. Use convolutional neural networks to detect and localize
features in imagery and point clouds.
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Python and NumPy Self Assessment

Given M ∈ Rm×n, x ∈ Rn×k, compute the matrix product
Mx ∈ Rm×k twice – first using only native Python, then using
NumPy.
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