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Questions?

History

Biological Motivation

Artificial Neural Networks
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Hinton’s Brief History of Deep Learning

What was hot in 1987?
■ Back propagation
■ Neural networks
What happened the past 30 years?
■ Computers got faster
■ Data sets got larger
■ Software tools improved (automatic differentiation)
What is hot in 2017?
■ Back propagation
■ Neural networks
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Neural Network History

1962

Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms

A Perceptron can learn anything you can program it to do.
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Neural Network History

1969

Minsky and Papert, Perceptrons: An introduction to
computational geometry

There are many things a perceptron can’t learn to do.



History 6

Neural Network History

1970-1985

Attempts to develop symbolic rule discovery algorithms.

1986
■ Back propagation – Rumelhart, Hinton, and Williams (cf. R.

Wengert, A Simple Automatic Derivative Evaluation Program,
Article in Communications of the ACM, 1964)

■ Overcame many of the Minsky & Papert objections
■ Neural networks popular in cognitive science and AI

(circa 1990)
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Neural Network History

1990-2005

Bayesian approaches
■ take the best ideas from neural networks – statistical

computing, statistical learning

Support-Vector Machines
■ unlike neural networks, SVMs can be proven to converge

A few old timers keep playing with neural nets
■ Hinton, LeCun, Bengio, O’Reilly
Neural networks banished from NIPS.
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Neural Network History

2005-2012

Attempts to resurrect neural networks with
■ Unsupervised pre-training
■ Probabilistic neural nets
■ Alternative learning rules
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Neural Network History

2012 (AlexNet)-present

New techniques discarded in
favor of 1980’s-style supervised
neural networks with
■ Vastly larger supervised

training sets
■ Hardware accelerators for fast

training and inference
■ Refinements in optimization

and generalization (mostly
from Hinton)
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Brains Versus Computers

Tasks that are easy for brains are not easy for computers, and vice
versa.

Brains
■ Recognizing faces
■ Retrieving information based on partial descriptions
■ Organizing information – the more information, the better the

brain operates
Computers
■ Arithmetic
■ Deductive logic: ((p → q) ∧ ¬q)) → ¬p
■ Retrieving information based on arbitrary features

→ Brains must operate quite differently than ordinary computers.
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Caricature of How the Brain Operates

The brain is composed of neurons.
Neurons convey and transform information.
What is this information?
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Figure 2: Averaging
instantaneous binary-valued
activity.
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Neurons

Dendrite receives, integrates signals
from other neurons. Neuron cell body
“decides”. Axons communicate decision
to other neurons.

Gross oversimplification
■ Many types of neurons (sensory,

motor, inter)
■ Electrical and chemical interactions
■ Many types of connections (e.g.

dendrodendritic synapses)

“Neuron” by US Federal Government is
licensed under CC BY-SA 3.0.

https://commons.wikimedia.org/wiki/File:Neuron.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Key Features of Cortical Computation

■ Neurons fire slowly - typically 100Hz, sometimes 1000Hz
■ Large number of neurons (10-100 billion)
■ Distributed, no central controller (unlike a CPU)
■ Neurons receive input from a large number of other neurons

(e.g. 104 fan-in and fan-out of cortical pyramidal cells)
■ Communication via excitation and inhibition
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Key Features of Cortical Computation (cont.)

■ Statistical decision making (neurons that unilaterally turn
on/off other neurons are rare)

■ Learning involves modifying coupling strengths (the tendency of
one cell to excite/inhibit another)

■ Neural hardware is dedicated to particular tasks (vs.
conventional computer memory)

■ Information is conveyed by mean firing rate of neuron (i.e. by
activation)
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Conventional Computer Versus the Brain

■ Conventional computers
» One very smart CPU
» Many dumb memory cells

■ Brains, connectionist computers
» No CPU
» Many slightly smart memory cells
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Modeling Individual Neurons

“Energy Landscape” is licensed under
CC BY-SA 3.0.
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https://commons.wikimedia.org/wiki/File:Energy_landscape.png
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Modeling Individual Neurons
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Computation with a Binary Threshold Unit

AND gate
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Computation with a Binary Threshold Unit

XOR gate
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Feed-Forward Architectures

Flow of activation

■ Activation flows in one
direction.

■ Associates input and output
patterns.

big, growling → run away
small, round, orange → eat
small, round, red → eat
small, growling → run away

■ Learning: adjust connections
to achieve input-output
mapping
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Recurrent Architectures

Example: Hopfield Network
(demo, video demo)
Achieves best interpretation of
partial or noisy patterns – e.g.
MAR--M-LLOW.
Learning: establishes new
attractors and shifts attractor
boundaries.

“Energy Landscape” is licensed under CC BY-SA
3.0.

http://faculty.etsu.edu/knisleyj/neural/neuralnet3.htm
https://www.youtube.com/watch?v=gfPUWwBkXZY
https://commons.wikimedia.org/wiki/File:Energy_landscape.png
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Supervised Learning in Neural Networks

1. Assume a set of training examples (xi, yi).
» big, growling → run away
» MAR--M-LLOW → MARSHMALLOW

2. Define a measure, E, of network error (cost, loss)
E =

∑
i ||yi − ŷi||2

3. Make small, incremental changes to the weights to decrease the
error (cost, loss) (i.e. gradient descent)
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