Neural Networks and Deep Learning Introduction II

Nicholas Dronen

Department of Computer Science dronen@colorado.edu

January 16, 2019

Questions?

History

Biological Motivation

Artificial Neural Networks

What was hot in 1987?

- Back propagation
- Neural networks
- What happened the past 30 years?
- Computers got faster
- Data sets got larger
- Software tools improved (automatic differentiation)

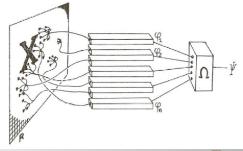
What is hot in 2017?

- Back propagation
- Neural networks

1962

Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms

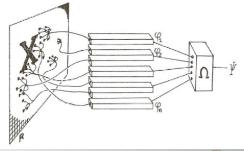
A Perceptron can learn anything you can program it to do.



1969

Minsky and Papert, Perceptrons: An introduction to computational geometry

 $There \ are \ many \ things \ a \ perceptron \ can't \ learn \ to \ do.$



Neural Network History

1970 - 1985

Attempts to develop symbolic rule discovery algorithms.

1986

- Back propagation Rumelhart, Hinton, and Williams (cf. R. Wengert, A Simple Automatic Derivative Evaluation Program, Article in Communications of the ACM, 1964)
- Overcame many of the Minsky & Papert objections
- Neural networks popular in cognitive science and AI

(circa 1990)

1990-2005

Bayesian approaches

take the best ideas from neural networks – statistical computing, statistical learning

Support-Vector Machines

- unlike neural networks, SVMs can be proven to converge
- A few old timers keep playing with neural nets
- Hinton, LeCun, Bengio, O'Reilly

Neural networks banished from NIPS.

2005-2012

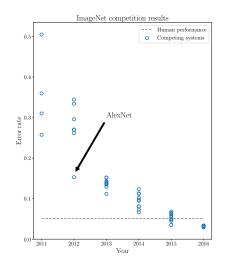
Attempts to resurrect neural networks with

- Unsupervised pre-training
- Probabilistic neural nets
- Alternative learning rules

2012 (AlexNet)-present

New techniques discarded in favor of 1980's-style supervised neural networks with

- Vastly larger supervised training sets
- Hardware accelerators for fast training and inference
- Refinements in optimization and generalization (mostly from Hinton)



Brains Versus Computers

Tasks that are easy for brains are not easy for computers, and vice versa.

Brains

- Recognizing faces
- Retrieving information based on partial descriptions
- Organizing information the more information, the better the brain operates

Computers

- Arithmetic
- Deductive logic: $((p \to q) \land \neg q)) \to \neg p$
- Retrieving information based on arbitrary features
- \rightarrow Brains must operate quite differently than ordinary computers.

Caricature of How the Brain Operates

The brain is composed of neurons.

Neurons convey and transform information.

What is this information?

Figure 1: Neural spikes over time.

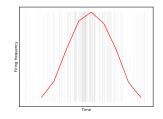
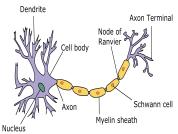


Figure 2: Averaging instantaneous binary-valued activity.

Dendrite receives, integrates signals from other neurons. Neuron cell body "decides". Axons communicate decision to other neurons.

Gross oversimplification

- Many types of neurons (sensory, motor, inter)
- Electrical and chemical interactions
- Many types of connections (e.g. dendrodendritic synapses)



"Neuron" by US Federal Government is licensed under CC BY-SA 3.0.

- Neurons fire slowly typically 100Hz, sometimes 1000Hz
- Large number of neurons (10-100 billion)
- Distributed, no central controller (unlike a CPU)
- Neurons receive input from a large number of other neurons (e.g. 10⁴ fan-in and fan-out of cortical pyramidal cells)
- Communication via excitation and inhibition

- Statistical decision making (neurons that unilaterally turn on/off other neurons are rare)
- Learning involves modifying coupling strengths (the tendency of one cell to excite/inhibit another)
- Neural hardware is dedicated to particular tasks (vs. conventional computer memory)
- Information is conveyed by mean firing rate of neuron (i.e. by activation)

Conventional computers

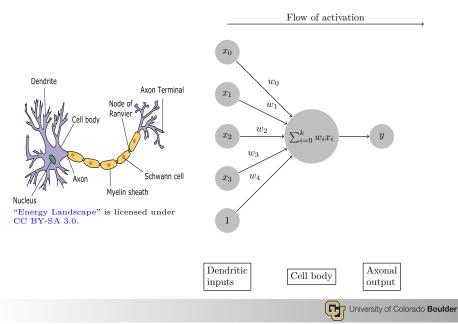
- » One very smart CPU
- » Many dumb memory cells

Brains, connectionist computers

- » No CPU
- » Many slightly smart memory cells

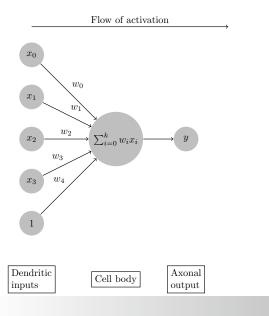
Artificial Neural Networks

Modeling Individual Neurons

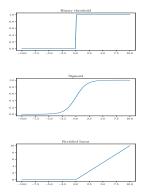


ARTIFICIAL NEURAL NETWORKS

Modeling Individual Neurons







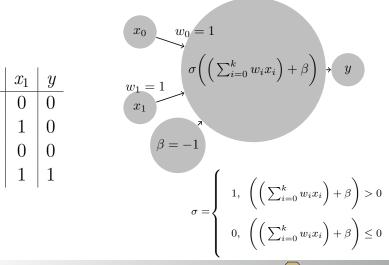
Computation with a Binary Threshold Unit

AND gate

 x_0

0

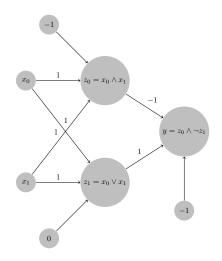
0



Computation with a Binary Threshold Unit

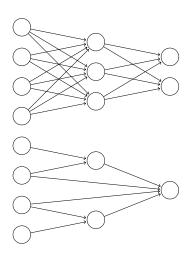
XOR gate

x_0	x_1	y
0	0	0
0	1	1
1	0	1
1	1	0



Feed-Forward Architectures

Flow of activation



- Activation flows in one direction.
- Associates input and output patterns.

big, growling	\rightarrow	run away
small, round, orange	\rightarrow	eat
small, round, red	\rightarrow	eat
small, growling	\rightarrow	run away

 Learning: adjust connections to achieve input-output mapping

Recurrent Architectures

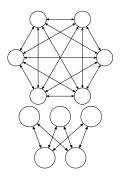
Example: Hopfield Network (demo, video demo)

Achieves best interpretation of partial or noisy patterns – e.g. MAR--M-LLOW.

Learning: establishes new attractors and shifts attractor boundaries.



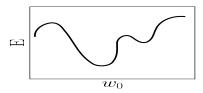
"Energy Landscape" is licensed under CC BY-SA 3.0.



Supervised Learning in Neural Networks

- 1. Assume a set of training examples (x^i, y^i) .
 - $\,\gg\,$ big, growling $\rightarrow\,{\rm run}$ away
 - » MAR--M-LLOW \rightarrow MARSHMALLOW
- 2. Define a measure, E, of network error (cost, loss)

$$E = \sum_i ||y^i - \hat{y}^i||^2$$



3. Make small, incremental changes to the weights to decrease the error (cost, loss) (i.e. gradient descent)

