
Neural Networks and Deep Learning
Learning I

Nicholas Dronen

Department of Computer Science
dronen@colorado.edu

January 23, 2019

mailto:dronen@colorado.edu

Outline 2

Questions?

Linear Associators

Hebbian Learning

Least Mean Squares (LMS)

Questions? 3

Notation

Vector x
Element i of x xi
Matrix X
Row i of X Xi
Element i, j of X xij

Network input x
Network output ŷ, ŷ
Network target y, y
Weight matrix W
Bias vector b
Set of network parameters θ

Linear Associators 4

Auto-Associative Memory

Given an incomplete representation of data, recall the data itself.

=⇒

=⇒

Linear Associators 5

Hetero-Associative Memory

Given a complete representation of data, recall related data.

=⇒

Ford GP
World War II

1941
Fun!

=⇒
Name

Hobbies
Home town

Linear Associators 6

Linear Associators (Anderson, Kohonen)

■ Two sets of units – input and output
■ Fully-connected – in the neural networks literature, a

“fully-connected” network is a sequence of complete, bipartite
graphs.

■ Linear activation function

ŷ = Wx ŷ1
...

ŷB

 =

w11 . . .w1A
...

wB1 . . .wBA


x1

...
xA



Linear Associators 7

Linear Associators (Anderson, Kohonen)

Supervised task - learn map from input x to output y, e.g. for
example α 

xα1...
xαA

 →


yα1...
yαB


How do we set weights W so ŷα = Wxα ∼ yα?

Hebbian Learning 8

Hebbian Learning

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.”
(Donald O. Hebb, 1949)

Hebbian Learning 9

Hebbian Weight Update Rule

Formalization of Hebb rule:
1. W ∼ N (µ, σ2) , e.g.

2. For t = 1 . . . p

α = t
ŷα = Wxα

∆Wt = ŷαxαT

Wt+1 = Wt +∆Wt

∆w11 . . .∆w1A
...

∆wB1 . . .∆wBA

 =

ŷα
1

...
ŷα

B

 [
xα1 . . . xαA

]

Where p is the number of training examples.
After presentation of p patterns, W =

∑p
α=1 yαxαT or

wji =
∑

yαj xαi .

Hebbian Learning 10

Analyzing Retrieval

Suppose the input patterns X are orthonormal, i.e., normalized
such that

∥xα∥ =
√

xαT · xα

=
√∑

xαi 2

= 1

and xα and xβ are orthogonal, α ̸= β,
∑

xαi xβi = 0.

Hebbian Learning 11

Analyzing Retrieval

For normalized vectors, dot product measures similarity:

cos(θ) = xαT · xβ

=
xαT · xβ

∥xα∥ ∥xβ∥
xα

xβ

θ

cos(0) = 1
cos(90) = 0

Hebbian Learning 12

Analyzing Retrieval

Given the input to a stored example, xα, what will the model
retrieve? (Note that xβTxα is 0 when β ̸= α.)

y = Wxα

= (

p∑
β=1

yβxβT
)xα

= y1x1Txα + . . .+ ypxpTxα

= yαxαTxα

= yα

Hebbian Learning 13

Inference with Non-Orthogonal Inputs

Suppose two examples are stored – (x1,y1) and (x2,y2) and x1 is
not orthogonal to x2 (e.g. x1Tx2 = .2, angle is cos−1(.2) = 78.5◦.)
What will the model retrieve given input x1?

y = Wx1

= (y1x1T
+ y2x2T

)x1

= y1x1Tx1 + y2x2Tx1

= y1 + 0.2y2

Interference of example 2 on example 1 is related to similarity of
x1 and x2 (i.e. the angle between them).

Hebbian Learning 14

Inference with Non-Orthogonal Inputs - Generalization

Suppose two examples are stored – (x1,y1) and (x2,y2) – and the
model is probed with another input xα.

y = Wxα

= (y1x1T
+ y2x2T

)xα

= y1[x1Txα] + y2[x2Txα]

The model produces yα with magnitude (strength) proportional to
the similarity of xα and xβ.

Hebbian Learning 15

Inference with Non-Orthogonal Inputs - Generalization

Suppose two examples are stored – (x1,y1) and (x2,y2) – and the
model is probed with input xα = .5x1 + .5x2.

y = Wxα

= (y1x1T
+ y2x2T

)xα = .5x1 + .5x2

= .5(y1x1Tx1 + y1x1Tx2 + y2x2Tx1 + y2x2Tx2)

= .5y1 + .5y2

An input that is the interpolation of two stored inputs results in
the retrieval of the interpolation of the corresponding outputs.

Least Mean Squares (LMS) 16

LMS Weight Update Rule

Can we do better than Hebb rule?
What would the optimal set of weights be?

x1 x2 x3

y

w1 w2 w3 y =
∑

wixi

x11w1 + x21w2 +x31w3 = y1

x12w1 + x22w2 +x32w3 = y2

...
x1kw1 + x2kw2 +x3kw3 = yk

Find weights that satisfy a
system of linear equations.

General case is many output
units – we’ll focus on a single

output unit.

Least Mean Squares (LMS) 17

Normal Equation

If input vectors span the input space (i.e. every input vector can
be expressed as a weighted combination of the xα), then the LMS
solution can be obtained via the normal equation

W = YXT(XXT)−1

Limitations of using the normal equation for solving for W:

■ Space complexity: all training examples must be in memory
simultaneously

■ Time complexity: matrix inversion is O(n3)

Least Mean Squares (LMS) 18

LMS Weight Update Rule

What if there is no set of weights that makes all equations true
(e.g. when there are more examples to be learned (equations) than
weights)?
Answer: Find least mean squares (LMS) solution – the set of
weights that minimizes the error E

E =
1

p

p∑
α=1

1

2
(ŷα − yα)2

where ŷ is the output of the network and y is the ground truth,
and p is the number of examples.
This is linear regression – finding the set of coefficients that best
predicts one variable (y ∈ R) from some other variables (x ∈ Rk,
where k is the number of features).

Least Mean Squares (LMS) 19

LMS Weight Update Rule

Consider a network with one input and output, y = wx + b.

0 2 4 6 8 10
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0
y

error = y y

y = wx + b

Each point corresponds to a training example.

Least Mean Squares (LMS) 20

Gradient Descent (with Scalar w)

Strategy: iteratively adjust the weights to decrease error.

w

E

Increasing w increases E

w

E

Decreasing w increases E

dE/dw

1. Use the slope of the
error surface, dE/dwt,
to determine direction
to change wt, where t is
the timestep.

2. wt+1 = wt +∆wt =
wt − ϵ dE

dwt
, where ϵ is the

learning rate or step
size.

With a scalar weight, we obtain the derivative dE
dw . We obtain the

gradient ∂E
∂wij

with a matrix weight W.

Least Mean Squares (LMS) 21

Gradient Descent (with Scalar w)

0 2 4 6 8 10
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

error = y y

y = wx + b

2 1 0 1 2
w

0

10

20

30

40

50

E w = 0.3

Minimum E = 0.08

Least Mean Squares (LMS) 22

Gradient Descent (with Matrix W)

∂E
∂W =

∂

∂W
1

p

p∑
α=1

1

2
(Wxα − yα)2

=
1

p

p∑
α=1

∂

∂W
1

2
(Wxα − yα)2

=
1

p

p∑
α=1

(Wxα − yα) ∂

∂W(Wxα − yα)

=
1

p

p∑
α=1

(Wxα − yα)xα

Least Mean Squares (LMS) 23

Error Surface

Convex, quadratic in W (i.e. highest exponent of ∂E
∂W is 2).

Training procedure:
1. Start at a random point in weight space.
2. Modify weights so as to move downhill in error.

w

E

Error surface with one weight

dE
dw

w0
w 1

E

Error surface with two weights

(∂E
∂w0

, ∂E
∂w1

)

Least Mean Squares (LMS) 24

Online Versus Batch Learning

Suppose we have a network with two inputs, one output, and our
dataset consists of two examples, (x1, y1), (x2, y2).

Suppose the weights must
satisfy the constraints

x11w1 + x21w2 = y1

x12w1 + x22w2 = y2

−3 −2 −1 0 1 2 3
w1

−3

−2

−1

0

1

2

3

w
2

constraint for (x1, y1)

constraint for (x2, y2)

Least Mean Squares (LMS) 25

Online Versus Batch Learning

Two approaches to computing gradients:
1. Online: after each example, i.e. ∆W = (ŷα − yα)xα.
2. Batch: after all examples, i.e., ∆W = 1

p
∑p

α=1(ŷα − yα)xα.

Stochastic Gradient Descent Batch Gradient Descent

	Questions?
	Linear Associators
	Hebbian Learning
	Least Mean Squares (LMS)

