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Questions?
Linear Associators
Hebbian Learning

Least Mean Squares (LMS)
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QUESTIONS?

Notation
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LINEAR ASSOCIATORS

Given an incomplete representation of data, recall the data itself.
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LINEAR ASSOCIATORS

Given a complete representation of data, recall related data.
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LINEAR ASSOCIATORS

Linear Associators (Anderson, Kohonen)
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LINEAR ASSOCIATORS

Linear Associators (Anderson, Kohonen)
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HEBBIAN LEARNING

Hebbian Learning
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HEBBIAN LEARNING

Hebbian Weight Update Rule
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HEBBIAN LEARNING

Analyzing Retrieval
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HEBBIAN LEARNING

Analyzing Retrieval

B
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HEBBIAN LEARNING

Analyzing Retrieval
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HEBBIAN LEARNING

Inference with Non-Orthogonal Inputs
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HEBBIAN LEARNING

Inference with Non-Orthogonal Inputs - Generalization
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HEBBIAN LEARNING

Inference with Non-Orthogonal Inputs - Generalization
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LEAST MEAN SQUARES (LMS)
LMS Weight Update Rule
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LEAST MEAN SQUARES (LMS)

Normal Equation
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LEAST MEAN SQUARES (LMS)
LMS Weight Update Rule
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LEAST MEAN SQUARES (LMS)

Consider a network with one input and output, y = wx + b.

Each point corresponds to a training example.
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LEAST MEAN SQUARES (LMS)

Strategy: iteratively adjust the weights to decrease error.
S O 0, & le}

dE/dw

Decreasing w increases E

Use the slope of the
error surface, dE/dwy,
to determine direction
to change wy, where ¢ is
the timestep.

Wi = w + Awy =

wy — 6% where € is the
learning rate or step

size.

dE

With a scalar weight, we obtain the derivative du We obtain the

0

gradient ;),Zf_ with a matrix weight W.
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Minimum E = 0.08




LEAST MEAN SQUARES (LMS)
Gradient Descent (with Matrix W)
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LEAST MEAN SQUARES (LMS)

Convex, quadratic in W (i.e. highest exponent of (D)VP;, is 2).
Training procedure:

1. Start at a random point in weight space.

2. Modify weights so as to move downhill in error.

Error surface with one weight

Error surface with two weights
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LEAST MEAN SQUARES (LMS)

Suppose we have a network with two inputs, one output, and our
dataset consists of two examples, (x!, 1), (x2, 1%).

constraint for (z', ")

Suppose the weights must
satisfy the constraints

ztw + ztwy = Y

zw + 2wy = o




LEAST MEAN SQUARES (LMS)

Two approaches to computing gradients:
PI I g8
1. Online: after each example, i.e. AW = (y* — y*)x“.

2. Batch: after all examples, i.e., AW = % b1~ — y™)x°.

constraint for (!, y') constraint for (!, y')

Stochastic Gradient Descent Batch Gradient Descent
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