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(c) Sequences of points interpolated at different depths
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https://arxiv.org/abs/1207.4404
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THE PERCEPTRON

The Perceptron is a device capable of computing all predicates ¥

that are linear in some set {¢1, @2, w3} of partial predicates.

Some confusion about definition. Perceptron is used to refer to -
®m This architecture
®m A binary threshold unit

® A learning rule
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THE PERCEPTRON

Intermediate units compute some binary function, ¢;, of the
inputs. Output units compute some binary function, ¥; of the
intermediate units.

U 1 > wips >0
0 otherwise
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THE PERCEPTRON

Perceptron Learning Rule (Rosenblatt, 1962)
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THE PERCEPTRON

Precondition of (Guaranteed) Success
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THE PERCEPTRON

Capabilities
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THE PERCEPTRON

What’s needed to perform translation- and rotation-invariant

object recognition?

What would a Perceptron’s weights need to be tuned to detect?
® Position
® QOrientation

m Scale
This is exponential in the number of input features (e.g. h x w,

where h (w) is the height (width) of an input image).
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THE PERCEPTRON

Informal Proof of Perceptron Convergence (Rosenblatt, 1962)
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THE PERCEPTRON

Another Proof of Perceptron Convergence (Novikoff, 1962)

Perceptron Mistake Bounds

Convergence Proof for the Perceptron Algorithm
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https://cs.nyu.edu/~mohri/pub/pmb.pdf
http://www.cs.columbia.edu/~mcollins/courses/6998-2012/notes/perc.converge.pdf

THE PERCEPTRON

Perceptrons and Feature Engineering
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THE PERCEPTRON

Feature Learning, Representation Learning
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MULTILAYER NEURAL NETWORKS AND BACKPROP

This video shows how each layer of a 4-layer feed-forward network

represents (a sample from) the MN test set during training.

layer0 iteration 0 layer2 iteration 0
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https://drive.google.com/file/d/1FBQ3uLVwU-G7nvRRJp-_PeYRfafYN6BS/view?usp=sharing

MULTILAYER NEURAL NETWORKS AND BACKPROP

The Power of Intermediate Layers (=Representations)
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MULTILAYER NEURAL NETWORKS AND BACKPROP

Extending LMS to handle squashing non-linearities and hidden units
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MULTILAYER NEURAL NETWORKS AND BACKPROP 18

Suppose output unit has sigmoid squashing function
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MULTILAYER NEURAL NETWORKS AND BACKPROP

Extending LMS to handle squashing non-linearities and hidden units
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MULTILAYER NEURAL NETWORKS AND BACKPROP

Back Propagation (Reinhard, Hinton, Willliams, LeCun, Parker, Werbos)
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MULTILAYER NEURAL NETWORKS AND BACKPROP

Back Propagation (Rumelhart, Hinton, Willliams; LeCun; Parker; Werbos)
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MULTILAYER NEURAL NETWORKS AND BACKPROP

What it boils down to
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MULTILAYER NEURAL NETWORKS AND BACKPROP
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