
Neural Networks and Deep Learning
Learning II

Nicholas Dronen

Department of Computer Science
dronen@colorado.edu

January 28, 2019

mailto:dronen@colorado.edu


Outline 2

Review

The Perceptron

Multilayer Neural Networks and Backprop



Review 3

Autoencoders and Interpolation

Better Mixing via Deep Representations, Bengio et al, 2012

https://arxiv.org/abs/1207.4404


Review 4

Where We’re Going

Different models, capabilities, tasks, depths.

■ Hebbian learning - linear - regression - shallow
■ LMS (delta rule) - linear - regression - shallow
■ Perceptrons - non-linear - classification - shallow

■ Multi-layer Neural Networks - non-linear - classification -
non-shallow



Review 4

Where We’re Going

Different models, capabilities, tasks, depths.
■ Hebbian learning - linear - regression - shallow

■ LMS (delta rule) - linear - regression - shallow
■ Perceptrons - non-linear - classification - shallow

■ Multi-layer Neural Networks - non-linear - classification -
non-shallow



Review 4

Where We’re Going

Different models, capabilities, tasks, depths.
■ Hebbian learning - linear - regression - shallow
■ LMS (delta rule) - linear - regression - shallow

■ Perceptrons - non-linear - classification - shallow

■ Multi-layer Neural Networks - non-linear - classification -
non-shallow



Review 4

Where We’re Going

Different models, capabilities, tasks, depths.
■ Hebbian learning - linear - regression - shallow
■ LMS (delta rule) - linear - regression - shallow
■ Perceptrons - non-linear - classification - shallow

■ Multi-layer Neural Networks - non-linear - classification -
non-shallow



Review 4

Where We’re Going

Different models, capabilities, tasks, depths.
■ Hebbian learning - linear - regression - shallow
■ LMS (delta rule) - linear - regression - shallow
■ Perceptrons - non-linear - classification - shallow

■ Multi-layer Neural Networks - non-linear - classification -
non-shallow



The Perceptron 5

Perceptron

The Perceptron is a device capable of computing all predicates Ψ
that are linear in some set {φ1, φ2, φ3} of partial predicates.

fixed connectors learned connectors

Some confusion about definition. Perceptron is used to refer to -
■ This architecture
■ A binary threshold unit
■ A learning rule



The Perceptron 6

Architecture

Input Intermediate Output

fixed connectors learned connectors

Intermediate units compute some binary function, φi, of the
inputs. Output units compute some binary function, Ψ1 of the
intermediate units.

Ψ =

{
1

∑
wiφi > θ

0 otherwise



The Perceptron 7

Perceptron Learning Rule (Rosenblatt, 1962)

1. Initialize w = 0

2. Process example i, (xi, yi).
3. Update as follows

∆wi =


0 if ŷ = y
xi if ŷ = 0 and y = 1
−xi if ŷ = 1 and y = 0

∆wi = (y−ŷ)xi ← Delta rule, same as LMS!

ŷ

y

wixi

ŷ =

{
1

∑
i wixi > 0

0 otherwise
No learning rate. Why?



The Perceptron 8

Precondition of (Guaranteed) Success

The Perceptron learning rule is guaranteed to succeed if the data
are linearly separable.
■ A hyperplane must exist that can separate positive and

negative examples
■ The weights define this hyperplane
E.g. A network with 2 inputs, 1 output

+
+

+
+

−
−
−

ŷ =

{
1 w1x1 + wxx2 + b > 0
0 otherwise

+ : y = 1
− : y = 0

: w1x1 + wxx2 + b = 0



The Perceptron 9

Capabilities

■ Low-order problems are solved by combining a few input
features

■ High-order problems → require an exponential number of
features.

Perceptrons can solve low-order problems.



The Perceptron 10

Limitations of Perceptrons

What’s needed to perform translation- and rotation-invariant
object recognition?

What would a Perceptron’s weights need to be tuned to detect?
■ Position
■ Orientation
■ Scale
This is exponential in the number of input features (e.g. h× w,
where h (w) is the height (width) of an input image).



The Perceptron 11

Informal Proof of Perceptron Convergence (Rosenblatt, 1962)

Consider the case y = 0, ŷ = 1

■ ŷ = 1 implies wxT > 0

■ w′ = w− x
Performance only improves if
■ w′xT < wxT

■ (w− x)xT < wxT

■ xxT > 0

Always true because
■ xxT = ∥x∥2

ŷ =

{
1

∑
i wixi > 0

0 otherwise

∆wi =


0 if ŷ = y
xi if ŷ = 0 and y = 1
−xi if ŷ = 1 and y = 0



The Perceptron 12

Another Proof of Perceptron Convergence (Novikoff, 1962)

■ On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata, volume
12, pages 615–622, 1962.

■ Perceptron Mistake Bounds, Mohri and Rostamizadeh
■ Convergence Proof for the Perceptron Algorithm, Michael

Collins

We will cover this in the lecture on optimization.

https://cs.nyu.edu/~mohri/pub/pmb.pdf
http://www.cs.columbia.edu/~mcollins/courses/6998-2012/notes/perc.converge.pdf


The Perceptron 13

Perceptrons and Feature Engineering

Major issue with perceptron architecture: we must specify the
representation (a.k.a features, input vectors x)
■ Features must be designed and implemented → feature

engineering
■ Exponential number of hidden can always solve problem
■ But leads to large network + poor generalization
With domain knowledge, we can engineer appropriate features,
but is that what we want?



The Perceptron 14

Feature Learning, Representation Learning

A better approach: feature learning, representation learning.
■ Still supervised. Training data encodes:

» “Raw” inputs
» Desired outputs/targets

■ The state of data as they pass through the network’s hidden
units are learned features or representations.

■ The network must learn weights so the hidden
representations/features/states maximize performance on the
supervised task at the output layer.

■ To learn good features, the supervised error must be pushed
back through the network. How?

What problems does this approach solve?



Multilayer Neural Networks and Backprop 15

Feature/Representation Learning Video

This video shows how each layer of a 4-layer feed-forward network
represents (a sample from) the MNIST test set during training.

https://drive.google.com/file/d/1FBQ3uLVwU-G7nvRRJp-_PeYRfafYN6BS/view?usp=sharing


Multilayer Neural Networks and Backprop 16

The Power of Intermediate Layers (=Representations)

A units

A′ units

B units

Input

Intermediate

Output

Projecting input vector from an A-dimensional space to
A′-dimensional space.

+ + − + − − − + classification errorE.g.

+
+

+
+

−
− −

no error



Multilayer Neural Networks and Backprop 17

Extending LMS to handle squashing non-linearities and hidden units

First, let’s derive the LMS update rule (delta rule) again.

∆wji ≈ −
∂E
∂wji

= − ∂E
∂oj

∂oj
∂wji

E =
∑

k

1

2
(yk − ok)

2

oj =
∑

k
wjkok

∂E
∂oj

= −(yj − oj) (1)

∂oj
∂wji

= oi (2)

≈ (yj − oj)oi



Multilayer Neural Networks and Backprop 18

Extending LMS to handle squashing non-linearities and hidden units

Suppose output unit has sigmoid squashing function

oj =
1

1 + e−netj

oj = (1 + e−netj)−1

∂oj
∂netj

= −1 · (1 + e−netj)−2.− e−netj (3)

=
1

1 + e−netj

e−netj

1 + e−netj
(4)

=
1

1 + e−netj

(
1− 1

1 + e−netj

)
(5)

= oj(1− oj) (6)



Multilayer Neural Networks and Backprop 19

Extending LMS to handle squashing non-linearities and hidden units

From (1), (2) and (6) -

∂E
∂wji

=
∂E
∂oj

∂oj
∂netj

∂netj
∂wji

≈ −(yj − oj)oj(1− oj)oi



Multilayer Neural Networks and Backprop 20

Back Propagation (Reinhard, Hinton, Willliams, LeCun, Parker, Werbos)

o3

w32

o2

w21

o1

E =
1

2
(y3 − o3)2

o3 =
1

1 + e−net3

net3 =
∑

i
w3ioi

o2 =
1

1 + e−net2

net2 =
∑

i
w2ioi

∂E
∂o3

= −(y3 − o3)

∂o3
∂net3

= o3(1− o3)

∂net3
∂w32

= o2
∂net3
∂o2

= w32

∂o2
∂net2

= o2(1− o2)

∂net2
∂w21

= o1



Multilayer Neural Networks and Backprop 21

Back Propagation (Rumelhart, Hinton, Willliams; LeCun; Parker; Werbos)

∂E
∂w32

=
∂E
∂o3

∂o3
∂net3

∂net3
∂w32

≈ −(y3 − o3)o3(1− o3)o2

∂E
∂w21

=
∂E
∂o2

∂o2
∂net2

∂net2
∂w21

≈ −(y3 − o3)o3(1− o3)w32o2(1− o2)o1

∂E
∂o2

=
∂E
∂o3

∂o3
∂net3

∂net3
∂o2

≈ −(y3 − o3)o3(1− o3)w32



Multilayer Neural Networks and Backprop 22

What it boils down to

∆wji = ϵδjoi (7)
For output unit,

δj = (yj − oj)oj(1− oj) (8)
For hidden unit,

δj =

[∑
k

δkwkj

]
oj(1− oj) (9)

δk

δj

wkj

∆wji for output unit is the same as LMS with a nonlinear output.
(LMS ≡ delta rule back prop ≡ generalized delta rule)



Multilayer Neural Networks and Backprop 23

■ Two phase process : Forward (activation propagation) phase
and Backward (error propagation phase)

■ As with the LMS rule, back prop performs gradient descent in
error space, i.e. finding best set of weights that minimize error.
weights = all weights (biases) in network.

■ Back propagation works for arbitrarily deep feedforward
networks.

Output

Input


	Review
	The Perceptron
	Multilayer Neural Networks and Backprop

