
Neural Networks and Deep Learning
Automatic Differentiation

Nicholas Dronen

Department of Computer Science
dronen@colorado.edu

January 30, 2019

mailto:dronen@colorado.edu

Outline 2

Questions?

Background

Some Methods of Differentiation

Automatic Differentiation (AD)
Forward-Mode AD
Reverse-Mode AD
Implementations

Background 3

Computing Derivatives of Composite Expressions

Recall from the previous lecture that we defined an artificial
neuron that computes

ŷ = σ

(
k∑

i=0

wixi

)
+ b.

To optimize neurons or networks of neurons, we must compute
derivatives (gradients, if multidimensional) of the constituent
terms of expressions like this to optimize neural networks.

Spot the error in this slide.

Background 4

Computation Graphs

y

+

+

+ *

* *

w0 x0 w1 x1

w2 x2

Background 5

Chain Rule

Given functions f and g, the derivative of their composition, f ◦ g,
is f ◦ g is

(f ′ ◦ g) · g′.

Equivalently, given variables z, y, and x, where z depends on y and
y on x,

dz

dx
=

dz

dy
· dy
dx

.

A computational graph is a directed acyclic graph (DAG) of
function compositions.

Background 6

Jacobian

■ A vector-valued function is a mapping from f : Rn → Rm.
■ The Jacobian operator is a generalization of the derivative

operator to vector-valued functions.
■ Jacobian matrix J captures the rate of change of each

component of y with respect to each component of input
variable x.

J =

∂y1
∂x1

. . ∂ym
∂x1

. . . .

. . . .
∂y1
∂xn

. . ∂ym
∂xn

Some Methods of Differentiation 7

Finite Differences

■ Numerical differentiation is the finite difference approximation
of derivatives using original function evaluated at some sample
points.

∂f(x)

∂xi
=

f(x+ hei)− f(x)

h

■ Pros - Not complicated to implement
■ Cons -

» Numerical approximations of derivatives are inherently
ill-conditioned and unstable, due to introduction of -
■ Truncation errors (caused by chosen value of x).
■ Round-off errors (caused by limited precision of computations).

» O(n) computation complexity for a gradient in n dimensions.

Some Methods of Differentiation 8

Symbolic Differentiation

■ Symbolic differentiation is the automatic manipulation of
expressions for obtaining derivative expressions, carried out by
applying transformations representing rules of differentiation
such as -

∂

∂x
(f(x) + g(x)) =

∂

∂x
f(x) +

∂

∂x
g(x)

■ Pros - Can give valuable insight into structure of problem
domain.

■ Cons -
» Careless symbolic differentiation can produce exponentially large

symbolic expressions which take correspondingly long time to
evaluate - expression swell

» Limited expressivity

Automatic Differentiation (AD) 9

Intuition

■ The insight behind AD is to apply symbolic differentiation at
the elementary operation level and keep intermediate numerical
results.

■ AD can differentiate not only closed-form expressions, but also
algorithms making use of control flow such as branching, loops,
recursion, and procedure calls.

Automatic Differentiation (AD) 10

Overview

Figure taken from Automatic differentiation in machine learning: A survey

Automatic Differentiation (AD) 11

Example

f(x1, x2) = ln(x1) + x1 ∗ x2 − sin(x2)

Computational graph for f(x1, x2) , Figure taken from Automatic differentiation in machine
learning: A survey

v−1 = x1

v1 = ln(v−1)

v3 = sin(v0)

v5 = v4 − v3

v0 = x2

v2 = v−1v0

v4 = v1 + v2

y = v5

Automatic Differentiation (AD) | Forward-Mode AD 12

Intuition

■ AD in forward mode is conceptually easy.
■ Method

» Apply chain rule to each elementary operation in the forward
primal trace and generate corresponding tangent (derivative) trace.

» Evaluating primals in lockstep with corresponding tangents gives
the required derivative in the final variable.

■ For cases f : Rn → Rm, where n ≫ m, Forward-mode becomes
computationally expensive.

Automatic Differentiation (AD) | Forward-Mode AD 13

Example

Forward Primal Trace
v−1 = x1 = 2
v0 = x2 = 5

v1 = ln(v−1) = ln2
v2 = v−1 = 10
v3 = sin(v0) = sin5
v4 = v1 + v2 = 10.693
v5 = v4 − v3 = 11.652

y = v5 = 11.652

Forward Tangent Trace
˙v−1 = ẋ1 = 1
v̇0 = x2 = 0

v̇1 = ˙v−1/v−1 = 1/2
v̇2 = ˙v−1v0 + v̇0v−1 = 5
v̇3 = v̇0cos(v0) = 0
v̇4 = v̇1 + v̇2 = 5.5
v̇5 = v̇4 − v̇3 = 5.5

ẏ = v̇5 = 5.5

Forward mode AD example to compute ∂y
∂x1

.The original evaluation
of primals on the left is augmented by tangent operations on the
right.

Automatic Differentiation (AD) | Forward-Mode AD 14

Complexity

■ Forward mode is efficient and straightforward for functions
f : R → Rm, as all derivatives of ∂yi

∂x can be computed in one
forward pass.

■ For f : Rn → R, forward mode requires n evaluations to
compute the gradient

∇f =

(
∂y

∂x1
, ...,

∂y

∂xn

)
which corresponds to a 1× n Jacobian matrix built one column
at a time.

Automatic Differentiation (AD) | Reverse-Mode AD 15

■ AD in reverse-mode corresponds to a generalized back
propagation algorithm, in that it propagates derivatives
backward from a given output.

■ This is done by complementing each intermediate variable vi
with an adjoint ∂yj

∂vi
, which represents the sensitivity of a

considered output yj w.r.t changes in vi.
■ Method -

» Original function code is run forward, populating intermediate
variables vi and recording dependencies in the computational
graph in a book-keeping procedure

» Derivatives are calculated by propagating adjoints in reverse, from
outputs to inputs

■ For cases f : Rn → Rm, where n ≫ m, reverse mode AD
performs well computationally.

Automatic Differentiation (AD) | Reverse-Mode AD 16

Example

Forward Primal Trace
v−1 = x1 = 2
v0 = x2 = 5

v1 = ln(v−1) = ln2
v2 = v−1 = 10
v3 = sin(v0) = sin5
v4 = v1 + v2 = 10.693
v5 = v4 − v3 = 11.652

y = v5 = 11.652

Reverse Adjoint Trace
x̄1 = ¯v−1 = 5.5
x̄2 = v̄0 = 1.716

¯v−1 = ¯v−1 + v̄1
∂v1
∂v−1

= 5.5

v̄0 = v̄0 + v̄2
∂v2
∂v0

= 1.716

¯v−1 = v̄2
∂v2
∂v−1

= 5

v̄0 = v̄3
∂v3
∂v0

= −0.284

v̄2 = v̄4
∂v4
∂v2

= 1

v̄1 = v̄4
∂v4
∂v1

= 1

v̄3 = v̄5
∂v5
∂v3

= −1

v̄4 = v̄5
∂v5
∂v4

= 1

v̄5 = ȳ = 1

Automatic Differentiation (AD) | Reverse-Mode AD 17

Computational

■ For f : Rn → R, one application of reverse mode is sufficient to
calculate the full gradient.

∇f =

(
∂y

∂x1
, ...,

∂y

∂xn

)
■ Machine learning principally involves gradient of a scalar-valued

objective w.r.t a large number of parameters, making reverse
AD the mainstay technique in form of back propagation.

■ In general, for f : Rn → Rm, if operation count to evaluate
original function is ops(f), the time taken to calculate an m× n
Jacobian for forward mode is n c ops(f), whereas reverse AD
takes m c ops(f) (Typically, m ≫ n).

■ However, the advantage comes at the cost of increased storage.

Automatic Differentiation (AD) | Reverse-Mode AD 18

Memory

Pop quiz: given what you’ve learned so far, what – if anything –
about feed-forward neural networks and back propagation may

consume more memory than when using a network after training?

Automatic Differentiation (AD) | Implementations 19

Source Code Transformation

■ This type of implementation provides extensions to
programming languages that automate the decomposition of
algorithms into AD-enabled elementary operations.

■ They are typically executed as preprocessors to transform input
in the extended language into the original language.

■ Tangent (Python), ADiMat (MATLAB)

Automatic Differentiation (AD) | Implementations 20

Source Code Transformation with Tangent

Figure source: https://github.com/google/tangent

Automatic Differentiation (AD) | Implementations 21

Tracing or Operator Overloading

■ In modern programming languages with polymorphic features,
operator overloading provides the most straightforward way of
implementing AD.

■ Primitives are overloaded so that each operation is logged onto a
tape (a linear trace) at runtime, the chain rule can then be
applied by walking this tape backward.

■ Autograd (Python), Chainer (Python), PyTorch (Python,
naturally), INTLab (MATLAB)

■ TensorFlow 2.0 supports “eager mode” by default – closer to AD,
but instructor does not know how close yet (still have to try it).

Automatic Differentiation (AD) | Implementations 22

AD Spectrum

Figure source: https://github.com/google/tangent

	Questions?
	Background
	Some Methods of Differentiation
	Automatic Differentiation (AD)
	Forward-Mode AD
	Reverse-Mode AD
	Implementations

