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Xavier Initialization

Heuristic: for each layer with nin inputs and nout outputs, set the
weight from input i to input j as

■ wji ∼ Gaussian
(
0, c2

nin

)
with c = 1 being sensible.

■ second term is variance, so standard deviation is n−0.5
in

Rationale
■ If xi ∈ {−1, 1}, then with this heuristic initialization, net input
zj =

∑
iwjixi ∼ Gaussian (0, c2)

■ Independent of network size
» Even when different layers have different fan-ins
» Even when you change the number of hidden units in your network.

Applies equally well if xi ∈ {−ξ, ξ}
See: Glorot and Bengio, Understanding the difficulty of training
deep feedforward neural networks, 2010
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Xavier Initialization

For each layer with nin inputs and nout outputs, the weight from
input i to input j should be set as
■ wji ∼ Gaussian

(
0, c2

nout+nin

)
or

wji ∼ Uniform
(
−c
√

6
nout+nin

, c
√

6
nout+nin

)
Rationale
■ Previous heuristic scheme controls variance.
■ Xavier initialization scheme aims to control both activation

variance and gradient variance.
Initialization scheme will depend on activation functions you’re
using
■ Most schemes are focused on logistic/sigmoid, tanh, softmax

functions
■ Exception: Delving Deeper into Rectifiers, He et al - Kaiming

(or He) initialization

https://arxiv.org/abs/1502.01852
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Rectified Linear Unit (ReLU)

■ Activation function :
y = max(0, z)

■ Derivative :

∂y

∂z
=

{
0 z ≤ 0
1 otherwise

Advantages
■ Fast to compute activations and derivatives.
■ No squashing of back propagated error signal as long as unit is

activated.
Disadvantages
■ Can potentially lead to exploding gradients and activations.
■ Units that are never activated above threshold won’t learn.
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Leaky ReLU

■ Activation function :

y =

{
z z > 0
αz otherwise

■ Derivative :

∂y

∂z
=

{
1 z > 0
α otherwise

Reduces to standard ReLU if α = 0
Trade off
■ α = 0 leads to ineffecient use of resources.
■ α = 1 lose non-linearity essential for interesting computation.
■ See also: https://arxiv.org/abs/1502.01852, He et al -

Parametric ReLU (PReLU)
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SoftPlus

■ Activation function :
y = ln(1 + ez)

■ Derivative :

∂y

∂z
=

1

1 + e−z
= logistic(z)

Advantages
■ Defined everywhere
■ Zero only for z −→ −∞
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Exponential linear unit

■ Activation function :

y =

{
z z > 0
α(ez − 1) otherwise

■ Derivative :

∂y

∂z
=

{
1 z > 0
y + α otherwise

Reduces to standard ReLU if α = 0
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Radial Basis Function

■ Activation function :

y = exp(−||x− w||2)

Sparse Activation
■ Many units just don’t learn.
■ Same issues as ReLU
Clever schemes to initialize weight
■ E.g. set w near clusters of x’s
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Input Normalization

What determines shape of the bowl?

E =
∑
α

(yα − [w1x
α
1 + w2x

α
2 ])

2

=
∑
α

(y − w1x1 − w2x2)(y − w1x1 − w2x2)

=
∑
α

(y2 − 2yx1w1 − 2yx2w2 + x21w
2
1 + x22w

2
2 + 2x1x2w1w2)

=
∑
α

y2 − 2
∑
α

(yx1)w1 − 2
∑
α

(yx2)w2 +
∑
α

(x21)w
2
1

+
∑
α

(x22)w
2
2 + 2

∑
α

(x1x2)w1w2
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Input Normalization

■ Curvature (elongation) along w1-axis is
determined by

∑
αX

2
1 (or, average value of

X2
1 across training inputs)

■ Curvature (elongation) along w2-axis is
determined by

∑
αX

2
2 (or, average value of

X2
2 across training inputs)

True whether w1 and w2 are in same or different layers.
■ We want activations of the units in the input layer to have the

same center and scale.
■ We want activations of units in different layers to have the same

center and scale.
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Input Normalization

Sensible to have inputs normalized to mean 0 and standard
deviation 1.
■ E[x̂i] =

1
p

∑p
α=1 ˆxi,α = 0

ˆxi,α : transformed input dimension i for training example α

■ E[x̂i
2] = 1

p

∑p
α=1 ˆxi,α

2 = 1

To achieve this, compute mean µi and std dev σi for each input
dimension i over training set.
■ ˆxi,α =

xi,a−µi

σi

For test set, need to apply same transformation.
■ Use µi and σi from training set.
■ They need to be stored along with network weights.
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Batch Normalization (BN)

■ When the input distribution to a learning system changes, it is
said to experience covariate shift.

■ BN is based on the premise that covariate shifts complicate the
training of machine learning systems, and removing it from
internal activations of the network may aid in training.

■ Advantages
» Beneficial effect on gradient flow by reducing the dependence of

gradients on the scale of the parameters or of their initial values.
This allows the use of much higher learning rates without the risk
of divergence.

» Claim: BN reduces the need for regularization
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Batch Normalization

■ Input

Values of x over a mini-batch : xi...xm

Parameters to be learned : γ, β

■ Output

Mini-batch mean : µB ←
1

m

m∑
i=1

xi

Mini-batch variance : σ2
B ←

1

m

m∑
i=1

(xi − µB)
2

Normalize : x̂i ←
xi − µB√
σ2
B + ε

Scale and shift : yi ← γx̂i + β ≡ BNγ,β(xi)
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Squared Error Loss

Sensible regardless of output range and output activation function?

E =
1

2

∑
j

(yj − ŷj)
2

∂E

∂ŷj
= −(yj − ŷj)

with logistic/sigmoid output unit,

ŷj =
1

1 + e−zj

∂ŷj
∂zj

= ŷj(1− ŷj)

with tanh output unit,

ŷj =
2

1 + e−zj
− 1

∂ŷj
∂zj

= (1 + ŷj)(1− ŷj)
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Logistic/Sigmoid versus Tanh

■ Output = .5
» when no input evidence,

bias=0

■ Will trigger activation in next
layer

■ Need large biases to neutralize
» biases on different scale than

other weights

■ Does not satisfy weight
initialization assumption of
mean activation = 0

■ Output = 0
» when no input evidence,

bias=0

■ Won’t trigger activation in
next layer

■ Don’t need large biases

■ Satisfies weight initialization
assumption
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Cross Entropy Loss

■ Used when the target output represents a probability
distribution
» E.g. a single output unit that indicates the classification decision

(yes, no) for an input.
Output ŷ ∈ [0, 1] denotes Bernoulli likelihood of class membership.
Target y indicates true class probability (typically 0 or 1)
single value represents probability distributions over 2 alternatives

■ Cross entropy, H, measures distance in bits from predicted
distributions to target distribution.

E = H = −yln(ŷ)− (1− y)ln(1− ŷ)

∂E

∂ŷ
=

ŷ − y

ŷ(1− ŷ)
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Squared Error vs. Cross Entropy

∂Esqerr

∂y
= ŷ − y

∂y

∂z
= ŷ(1− ŷ)

∂Esqerr

∂z
= (ŷ − y)ŷ(1− ŷ)

∂Exentropy

∂y
=

ŷ − y

ŷ(1− ŷ)

∂y

∂z
= ŷ(1− ŷ)

∂Exentropy

∂z
= ŷ − y

Essentially, cross entropy does not suppress learning when output
is confident (near 0,1)
■ net devotes its efforts to fitting target values exactly.
■ consider situation where ŷ = 0.99 and y =1
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Softmax

Each input can belong to one category
■ ŷj denotes the probability that the input’s category is j
To interpret ŷ as a probability distribution over the alternatives.
■
∑

j ŷj = 1 and 0 ≤ ŷj ≤ 1

Activation function
■ ŷj =

ezj∑
k ezk

» exponentiation ensures non-negative values
» denominator ensures sum to 1
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Derivatives of Categorical Outputs

For softmax output function

ŷj =
ezj∑
k e

zk
zj =

∑
i

wjixi

Weight update is same as for two category case when expressed in
terms of ŷ

∆wji = εδjxi

δj =
∂E

∂ŷj
ŷj(1− ŷj) for output unit

=

(∑
k

wkjδk

)
ŷj(1− ŷj) for hidden unit



Optimization Algorithms 21

Adagrad

■ Initialization

Gradient accumulation variable : r = 0

Learning rate : ε

Initial parameter : θ

Constant for numerical stability : δ = 10−7

■ Update

Compute gradient : g
Accumulate squared gradient : r ← r + g ⊙ g

Compute parameter update : ∆θ ← −ε
δ +
√
r
⊙ g

Apply update : θ = θ +∆θ
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RMSProp

■ Initialization

Accumulation variable : r = 0

Learning rate : ε

Decay rate : ρ

Initial parameter : θ

Constant for numerical stability : δ = 10−7

■ Update

Compute gradient : g
Accumulate squared gradient : r ← ρr + (1− ρ)g ⊙ g

Compute parameter update : ∆θ ← −ε√
δ + r

⊙ g

Apply update : θ = θ +∆θ
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Adam

■ Initialization

Step size : ε

Exponential decay rates : ρ1, ρ2 in [0,1)

Constant for numerical stability : δ = 10−7

Initial parameter : θ
Time step : t = 0

First and second moment variables : s = 0, r = 0



Optimization Algorithms 24

Adam

■ Update

Compute gradient : g
Increment time step : t = t+ 1

Update biased first moment estimate : s← ρ1s+ (1− ρ1)g

Update biased second moment estimate : r ← ρ2r + (1− ρ2)g ⊙ g

Correct bias in first moment : ŝ =
s

1− ρt1

Correct bias in second moment : r̂ =
r

1− ρt2

Compute parameter update : ∆θ ← −ε ŝ

δ +
√
r̂

Apply update : θ = θ +∆θ
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Setting the Learning Rate

Initial guess for learning rate
■ If error doesnt drop consistently, lower initial learning rate and

try again
■ If error falls reliably but slowly, increase learning rate.
■ Effective number of free parameters (model complexity)

increases with training
Toward end of training
■ Error will often jitter, at which point you can lower the learning

rate down to 0 gradually to clean up weights
Remember, plateaus in error often look like minima
■ Have some idea a priori how well you expect your network to be

doing, and print statistics during training that tell you how well
its doing

■ Plot epochwise error as a function of epoch, even if you’re doing
minibatches
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Setting the Learning Rate

Momentum
■ ∆wt+1 = θ∆wt − (1− θ)ε ∂E

∂wt

Adaptive and neuron-specific learning rates
■ Observe error on epoch t− 1 and epoch t

■ If decreasing, then increase global learning rate, εglobal, by an
additive constant

■ If increasing, decrease global learning rate by a multiplicative
constant

■ If fan-in of neuron j is fj , then εj =
εglobal√

fj
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When to Stop Training

Early stopping with a validation set.

■ Hidden units all try to grab
the biggest sources of error.

■ As training proceeds, they
start to differentiate from one
another

■ Effective number of free
parameters (model
complexity) increases with
training Figure source: https://www.fast.ai/
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Challenges in Optimization

■ Ill-conditioning
■ Local Minima
■ Plateaus, Saddle Points and Other Flat Regions
■ Cliffs and exploding gradients
■ Long-term dependencies
■ Inexact gradients
■ Poor correspondence between local and global structure
■ Theoretical limits of optimization
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