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model loss

Characteristics of a good model

® Minimum error on validation
set

® Good approximation on test
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Approximating Complex Functions
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Optimal complexity
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Bias and Variance
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m Regardless of training sample size or characteristics, the model
will produce consistent errors.

m Solution: Increase model complexity. Make it more

deep/expressive.
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m Different samples of training data yield different model fits.
® Resulting model trained on 1 set needs to be retrained on other
set.

® Solution: Increase data size or simplify model.
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Bias-Variance Decomposition
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m Use bias/variance analysis as a tool for model selection.
» If bias is high: Add more layers to the network
» If variance is high: Decrease the layers in the network

® Can be approximated using many variants of D i.e. Bootstrap
Sampling

London’s daily temperature in 2000 Model performance for London 2000 temperatures

—— degree 12 polynomial —o— error in fitting the sample
- - degree 3 polynomial - 8- error in predicting the population
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Bias Variance Analysis - Conclusion
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How do you select the optimal number of hidden units, number of

layers, connectivity, etc.?

m Validation method: Split
training set into two parts, T'
and V, train many different
architectures on 7, and choose
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the architecture which
minimizes error on V.

Model Complexity

m K-fold cross validation
How do you search over hyperparameters efficiently?
®m Early stopping

® Bayesian optimization
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The Danger of Minimizing Network Size

@T University of Colorado Boulder



REGULARIZATION NIQUES

Basic Strategy

@T University of Colorado Boulder



REGULARIZATION TECHNIQUES

Augmenting an existing dataset can, in effect, create more
examples — better generalization.

® Mirroring

Random cropping

Rotation

Color shifting

University of Colorado Boulder
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Data Augmentation - Text Data

Deep Unordered Composition Rivals
Syntactic Methods for Text Classification
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http://www.aclweb.org/anthology/P15-1162
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Early Stopping
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L2 weight decay
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Can be interpreted as Bayesian
Priors
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Dropout
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Dropout as an ensemble method

Goodfellow, Bengio, Courville
2016
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Dropout
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Dropout
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Other Regularization Techniques

Training with Noise is Equivalent to Tikhonov Regularization
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https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-95.pdf
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Other Regularization Techniques
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