Neural Networks and Deep Learning Regularization

Nicholas Dronen

Department of Computer Science dronen@colorado.edu

February 6, 2019

Bias-Variance Tradeoff

Regularization Techniques

Data Augmentation Early Stopping Weight Penalties Dropout Miscellanous

ICLR 2017 Best Paper

Understanding Deep Learning Requires Rethinking Generalization, Zhang, et al, ICLR 2017 Our central finding can be summarized as:

Deep neural networks easily fit random labels

BIAS-VARIANCE TRADEOFF

Finding the Best Hypothesis

Characteristics of a good mode

- Minimum error on validation set
- Good approximation on test set

Approximating Complex Functions

- Increase model complexity
- Massive amounts of training data
- If both the criteria are satisfied, we are finished.
- This rarely happens outside labs.

BIAS-VARIANCE TRADEOFF

Approximating Complex Functions

- Approximating complex functions using complex hypotheses is risky.
- Leads to overfitting or underfitting if above 2 criteria are not satisfied.
- Bias and variance can be used as a tool to identity underfitting and overfitting

Bias

- Regardless of training sample size or characteristics, the model will produce consistent errors.
- Solution: Increase model complexity. Make it more deep/expressive.

Variance

- Different samples of training data yield different model fits.
- Resulting model trained on 1 set needs to be retrained on other set.
- Solution: Increase data size or simplify model

Bias-Variance Decomposition

- Given a data set $D = (x_1, y_1), ..., (x_n, y_n)$
- A model built from data set D: f(x; D)
- We can evaluate model effectiveness using Mean Squared Error:

$$MSE = E_{p(x,y,D)}[(y - f(x; D))^{2}]$$

= $\underbrace{(E_{D}[f(x; D)] - E[y|x])^{2}}_{1} + \underbrace{E_{D}[(f(x; D) - E_{D}[f(x; D)])^{2}]}_{2} + \underbrace{E_{D}[(y - E[y|x])^{2}]}_{3}$

- 1. bias difference between average model prediction (across data sets) and the target
- 2. variance of models (across) data sets for a given point.
- 3. intrinsic noise in data set

BIAS-VARIANCE TRADEOFF

Bias Variance Dilemma - Model Selection

- Use bias/variance analysis as a tool for model selection.
 - » If bias is high: Add more layers to the network
 - » If variance is high: Decrease the layers in the network
- Can be approximated using many variants of *D* i.e. Bootstrap Sampling

BIAS-VARIANCE TRADEOFF

Bias Variance Analysis - Conclusion

High Bias

- » Choose a more complex model
- » Train model for higher number of epochs

High Variance

- » Bootstrap Aggregation
- » Batch Normalization
- » Data Augmentation
- » Regularization

Setting Model Hyperparameters

How do you select the optimal number of hidden units, number of layers, connectivity, etc.?

- Validation method: Split training set into two parts, T and V, train many different architectures on T, and choose the architecture which minimizes error on V.
- K-fold cross validation

How do you search over hyperparameters efficiently?

- Early stopping
- Bayesian optimization

The Danger of Minimizing Network Size

Local Optima arise only if you use a highly constrained network

- minimum number of hidden units
- minimum number of layers
- minimum number of connections

Having sparse capacity in the net means there are many identical solutions

• Example: If you have 10 hidden and need only 2, there are 45 equivalent solutions

Basic Strategy

Instead of starting with the smallest net possible, use a larger network and apply various tricks to avoid overfitting.

8 ideas to follow....

Data Augmentation - Visual Data

Augmenting an existing dataset can, in effect, create more examples \rightarrow better generalization.

- Mirroring
- Random cropping
- Rotation
- Color shifting

Data Augmentation - Text Data

Augmenting an existing dataset can, in effect, create more examples \rightarrow better generalization.

- Replacing words with synonyms
- Word dropout (e.g. Deep Unordered Composition Rivals Syntactic Methods for Text Classification)

Early Stopping

- Rather than training until network error converges, stop training early
- Rumelhart
 - » hidden units all go after the same source of error initially \rightarrow redundancy
- Hinton
 - $\,\gg\,$ Weights start small and grow over training
 - $\, \mathbb { > } \,$ When weights are small, model is mostly operating in linear regime
- Dangerous: very dependent on training algorithm
 » Example: What would happen with random weight search?
- While probably not the best technique for controlling model complexity, it does suggest that you shouldn't obsess over finding a minimum error solution.

Weight Penalties

$$\begin{array}{rl} \text{L2 weight decay} \\ E &=& \frac{1}{2} \sum_{j} (t_j - y_j)^2 + \frac{\lambda}{2} \sum_{i,j} w_{ji}^2 \\ \Delta w_{ji} &= \varepsilon \delta_j x_i - \varepsilon \lambda w_{j,i} \end{array}$$

Weight elimination $E = \frac{1}{2} \sum_{j} (t_j - y_j)^2 + \frac{\lambda}{2} \sum_{i,j} \frac{w_{ji}^2/w_0^2}{1 + w_{ji}^2/w_0^2}$

Can be interpreted as Bayesian Priors

Dropout

1. Dropout

- » On each training trial, randomly remove a portion of units (hidden and possibly input)
 - \blacksquare leads to robustness of network to lesions
 - leads to less specificity of hidden unit responses, or more sharing of responsibility
 - \blacksquare leads to better generalization
- » On each test trial, leave all units in, but reweight connections with factor of α (expectation of contribution)

Dropout as an ensemble method

0

Goodfellow, Bengio, Courville 2016

With H hidden units, each of which can be dropped, we have 2^H possible models

Each of the 2^{H-1} models which include hidden unit h must share the same weights for the units

- serves as a form of regularization
- makes the models cooperate

Including all hidden units at test with α -scaling is equivalent to computing the geometric mean of all 2^H models

- Exact equivalence with one hidden layer
- "Pretty good approximation" according to Geoff with multiple hidden layers

Dropout

Advantages

- Computationally cheap
- Seems to work robustly, probably better than weight penalties

Disadvantages

 Adds noise to gradient descent, which makes it hard to control learning rates and know when training has reached asymptote

Other Regularization Techniques

• Hard constraint on weights

- » Ensure that $\sum_{i} w_{ji}^2 < \phi$ for every unit
- » If constraint is violated, rescale all weights $w_{ji} \leftarrow w_{ji} \frac{\phi}{\sum w}$
- » I'm not clear why L_2 normalization and not L_1

Additive Noise

» Training with Noise is Equivalent to Tikhonov Regularization

Sparsity Constraints

» Penalties on activations, not weights

Model Averaging

- » Multiple neural networks
- » Bagging, boosting, other ensemble methods

