
Neural Networks and Deep Learning
Convolutional Networks I - Foundations

Nicholas Dronen

Department of Computer Science
dronen@colorado.edu

February 11, 2019

mailto:dronen@colorado.edu


Outline 2

Why ConvNets?
Building Blocks

Discrete Convolution
Pooling

Hyper parameters
Convolution Arithmetic
Other Convolutional Layers

Transposed Convolution
Dilated Convolution
Depthwise Convolution
Tiled Convolution

ConvNet Architectures
Encoder
Decoder
Encoder-Decoder



Why ConvNets? 3

Typical-looking filters on the first CONV layer (left), and the 2nd CONV layer (right) of a trained
AlexNet. Notice that the first-layer weights are very nice and smooth, indicating nicely converged

network. The color/grayscale features are clustered because the AlexNet contains two separate
streams of processing, and an apparent consequence of this architecture is that one stream develops
high-frequency grayscale features and the other low-frequency color features. The 2nd CONV layer

weights are not as interpretable, but it is apparent that they are still smooth, well-formed, and
absent of noisy patterns.

Image and Text Source: http://cs231n.github.io/understanding-cnn



Why ConvNets? 4

original image

original image

blur filter

edge detect filter

result

result

Source:https://docs.gimp.org/2.6/en/plug-in-convmatrix.html



Why ConvNets? 5

■ Sparse interactions.
■ Parameter sharing.
■ Equivariant representation.



Building Blocks | Discrete Convolution 6

Discrete Convolution

■ Discrete convolution is a linear transformation which preserves
ordering of the data. It is sparse and reuses parameters.

■ A kernel slides through the input feature map, At each location,
the product between each element of the kernel and the input
element it overlaps is computed and the results are summed up
to obtain the output in the current location

■ The procedure can be repeated using different kernels to form
as many output feature maps as desired.



Building Blocks | Discrete Convolution 7

Discrete Convolution

Image source: A guide to convolution arithmetic for deep learning.
blue: input feature map, shaded blue: kernel, green: output feature map.



Building Blocks | Pooling 8

Pooling

■ Pooling operations reduce the size of feature maps by using
some function to summarize subregions, such as taking the
average or the maximum value.

■ Pooling works by sliding a window across the input and feeding
the content of the window to a pooling function.

■ In some sense, pooling works very much like a discrete
convolution, but replaces the linear combination described by
the kernel with some other function.

■ Types -
» Max pooling
» Average pooling



Building Blocks | Pooling 9

Pooling

Image source: A guide to convolution arithmetic for deep learning.
blue: input feature map, shaded blue: max pooling kernel, green: output feature map.



Hyper parameters 10

Depth

■ Depth of the output volume is a hyperparameter, it corresponds
to the number of kernels/filters we would like to use, each
learning to look for something different in the input.

■ For example, if the first convolutional layer takes as input the
raw image, then different neurons along the depth dimension
may activate in presence of various oriented edges, or blobs of
color



Hyper parameters 11

Stride

■ Stride is the distance between two consecutive positions of the
kernel

■ Strides constitute a form of subsampling. As an alternative to
being interpreted as a measure of how much the kernel is
translated, strides can also be viewed as how much of the
output is retained.

■ For instance, moving the kernel by hops of two is equivalent to
moving the kernel by hops of one but retaining only odd output
elements.

■ Increasing the stride will produce smaller output volumes
spatially.



Hyper parameters 12

Padding

■ Zero padding is concatenating zeros around the border for
convenience.

■ The nice feature of zero padding is that it will allow us to
control the spatial size of the output volumes.

■ Types
» Padding schemes: valid, half/same, full
» Padding Values

■ Zero
■ Reflection
■ Replication
■ Constant



Hyper parameters 13

Output Size

The following properties affect the output size oj of a conv layer
along axis j -

ij : input size along axis j
kj : kernel size along axis j
sj : stride along axis j
pj : zero-padding along along axis j

The following properties affect the output size oj of a pooling layer
along axis j -

ij : input size along axis j
kj : kernel size along axis j
sj : stride along axis j



Hyper parameters 14

Output Size

Image source: A guide to convolution arithmetic for deep learning.
N = 2, i1 = i2 = 5, k1 = k2 = 3, s1 = s2 = 2, p1 = p2 = 1



Convolution Arithmetic 15

Setup

Simplified setting
■ 2D discrete convolutions (N = 2)

■ Square inputs (i1 = i2 = i)
■ Square kernel size (k1 = k2 = k)
■ Same stride along both axes (s1 = s2 = s)
■ Same zero padding along both axes (p1 = p2 = p)



Convolution Arithmetic 16

No zero padding, unit strides

■ In this case the kernel just slides across every position of the
input (i.e. s = 1 and p = 0).

For any i, k and s = 1,

o = (i − k) + 1

i = 4, k = 3, s = 1, p = 0



Convolution Arithmetic 17

Zero padding, unit strides

■ Padding with p zeros changes the effective input size from i to
i + 2p.

For any i, k, p, s = 1,

o = (i − k) + 2p + 1



Convolution Arithmetic 18

Half (or “same”) padding

■ Having the output size be the same as the input size (i.e., o = i)
can be a desirable property.

For any i and odd k (k = 2n + 1, n ∈ N), s = 1 and p = ⌊k/2⌋ = n,
o = i + 2 ⌊k/2⌋ − (k − 1) = i

i = 5, k = 3, s = 1, p = 1



Convolution Arithmetic 19

Full padding

■ While convolving a kernel generally decreases the output size
with respect to the input size, sometimes the opposite is
required. This can be achieved with proper zero padding.

For any i and k, s = 1 and for p = k − 1, s = 1,

o = i + 2(k − 1)− (k − 1) = i + (k − 1)

i = 5, k = 3, s = 1, p = 2



Convolution Arithmetic 20

No zero padding, non-unit strides

■ In this case, the output size can be defined in terms of the
number of possible placements of the kernel on the input.

■ The kernel starts as usual on the leftmost part of the input, but
this time it slides by steps of size s until it touches the right side
of the input.

■ The size of the output is equal to the number of steps made,
plus one, accounting for the initial position of the kernel.

■ The floor function accounts for the fact that sometimes the last
possible step does not coincide with the kernel reaching the end
of the input, i.e., some input units are left out.

For any i, k, s and for p = 0,

o =

⌊
i − k

s

⌋
+ 1



Convolution Arithmetic 21

Zero padding, non-unit strides

■ The most general case, can be derived from the previous cases.

For any i, k, s and p,

o =

⌊
i + 2p − k

s

⌋
+ 1



Other Convolutional Layers | Transposed Convolution 22

Transposed Convolution

■ Transposed convolutions – also called fractionally strided
convolutions or deconvolutions – work by swapping the forward
and backward passes of a convolution.

■ The simplest way to think about a transposed convolution on a
given input is to imagine such an input as being the result of a
direct convolution applied on some initial feature map. The
transposed convolution can be then considered as the operation
that allows to recover the shape of this initial feature map.



Other Convolutional Layers | Dilated Convolution 23

Dilated Convolution

■ Dilated convolutions “inflate” the kernel by inserting spaces
between the kernel elements. The dilation “rate” is controlled
by an additional hyper-parameter d.

■ Implementations may vary, but there are usually d−1 spaces
inserted between kernel elements such that d = 1 corresponds to
a regular convolution.

■ Dilated convolutions cheaply increase the receptive field of
output units without increasing the kernel size



Other Convolutional Layers | Dilated Convolution 24

Dilated Convolution

i = 7, k = 3, d = 2, s = 1, p = 0



Other Convolutional Layers | Depthwise Convolution 25

Image Source: https://eli.thegreenplace.net



Other Convolutional Layers | Tiled Convolution 26

What?

Left: Convolutional Neural Networks with local receptive fields and tied weights.
Right: Partially untied local receptive field networks – Tiled CNNs.

Image Source: Tiled convolutional neural networks.



ConvNet Architectures | Encoder 27

Encoder

AlexNet CNN Architecture
Image source: https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch01.html.



ConvNet Architectures | Decoder 28

GAN

Image source:
https://www.oreilly.com/ideas/deep-convolutional-generative-adversarial-networks-with-tensorflow



ConvNet Architectures | Encoder-Decoder 29

Encoder-Decoder

Image source: SegNet - A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.


	Why ConvNets?
	Building Blocks
	Discrete Convolution
	Pooling

	Hyper parameters
	Convolution Arithmetic
	Other Convolutional Layers
	Transposed Convolution
	Dilated Convolution
	Depthwise Convolution
	Tiled Convolution

	ConvNet Architectures
	Encoder
	Decoder
	Encoder-Decoder


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	2.35: 
	2.36: 
	2.37: 
	2.38: 
	2.39: 
	2.40: 
	2.41: 
	2.42: 
	2.43: 
	2.44: 
	2.45: 
	2.46: 
	2.47: 
	2.48: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PauseLeft: 
	2.PlayLeft: 
	2.PlayPauseLeft: 
	2.PauseRight: 
	2.PlayRight: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	anm3: 
	3.EndLeft: 
	3.StepLeft: 
	3.PauseLeft: 
	3.PlayLeft: 
	3.PlayPauseLeft: 
	3.PauseRight: 
	3.PlayRight: 
	3.PlayPauseRight: 
	3.StepRight: 
	3.EndRight: 
	3.Minus: 
	3.Reset: 
	3.Plus: 


