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An RNN can be made deep in
several ways. (a) The hidden
recurrent state can be broken
into groups organized
hierarchically. (b) Deeper
computational modules (e.g.,
an MLP) can be introduced
in a variety of places. (c) Skip
connections can be added to
ease optimization. Source:
http://www.deeplearningbook.org.
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Difficulty of Learning Depends on Temporal Distance of Dependencies

“In practice, the experiments in Bengio et al. (1994) show that as
we increase the span of the dependencies that need to be captured,
gradient-based optimization becomes increasingly difficult, with
the probability of successful training of a traditional RNN via
SGD rapidly reaching 0 for sequences of only length x or y.”
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Difficulty of Learning Depends on Temporal Distance of Dependencies

“In practice, the experiments in Bengio et al. (1994) show that as
we increase the span of the dependencies that need to be captured,
gradient-based optimization becomes increasingly difficult, with
the probability of successful training of a traditional RNN via
SGD rapidly reaching 0 for sequences of only length 10 or 20.”
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Nonlinearities and Instability

Repeatedly applying a non-linear
function (here, tanh) results in
many small derivatives, some
large ones, and many changes in
the sign of derivatives.

Axes show a linear projection of
100-dimensional state down to 1
dimension.
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Vanishing/Exploding Gradients and Recurrent Networks

Consider the recurrence of an RNN without respect to the input

h(t) = WTh(t−1)

This reduces to
h(t) = (W(t))Th(0)

If W lends itself to eigendecomposition s.t. W = QΛQT, with Q
being orthogonal, then h(t) can be written as

h(t) = QTΛtQh(0)

What is the implication of Λt for the training of RNNs?
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Vanishing/Exploding Gradients and Feed-Forward Networks

Assume a scalar weight
w. With an initial state
of 1, the state at time t is∏

t w(t). If w1, . . . ,wt are
i.i.d. with zero mean and
unit variance, then
judicious sampling of
w1, . . . ,wt can yield the
desired variance for the
product neither to vanish
nor explode.

Source: Random Walk Initialization for Training Very
Deep Feedforward Networks, Sussillo and Abbott, 2014

https://arxiv.org/abs/1412.6558
https://arxiv.org/abs/1412.6558
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One way to overcome the difficulty of training the recurrent layer
of an RNN is to … punt.

■ Echo State Networks (ESN)
■ Liquid State Machines (like ESNs, with spiking activations)

Set the recurrent weights W
such that the spectral radius of
W is e.g. 3, keep them fixed
during training, and train only
output layer.

Solid arrows are fixed weights,
dashed are trainable. Source: Adaptive
Nonlinear System Identification with Echo State
Networks, Jaeger, 2003

 http://papers.nips.cc/paper/2318-adaptive-nonlinear-system-identification-with-echo-state-networks.pdf
 http://papers.nips.cc/paper/2318-adaptive-nonlinear-system-identification-with-echo-state-networks.pdf
 http://papers.nips.cc/paper/2318-adaptive-nonlinear-system-identification-with-echo-state-networks.pdf


Reservior Computing 10

Strategies for Accounting for Multiple Time Scales

■ Add skip connections through time with delay d (gradients
diminish like τ/d rather than τ)

■ Removing connections
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Leaky Units

■ Obtaining paths on which the product of derivatives is near one
can be done by having units with linear self-connections and a
weight α near one on these connections.

■ In a moving running average µt of some value vt (e.g. via
µt ← αµt−1 + (1− α)vt), the α parameter acts as a linear
self-connection from µt−1 to µt, because it preserves the past.

■ Leaky units – hidden units with linear self-connections – can
behave similarly to moving averages.
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Long Short-Term Memory (LSTM)

Block diagram of the LSTM recurrent network “cell.” Cells are
connected recurrently to each other, replacing the usual hidden

units of ordinary recurrent networks
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Long Short-Term Memory (LSTM)

Sutskever et al, 2014 trained a encoder-decoder LSTM to perform
machine translation.
■ Separate encoder and decoder allows for simultaneous training

of multiple language pairs
■ Encoder and decoder each had four layers (four layers of

recurrences via LSTM cells)
■ Sentences were input to the encoder in reverse - “greatly

boost(ed) the performance of the LSTM”

The encoder-decoder LSTM reads an input sentence “ABC” and
produces “WXYZ” as the output sentence. Source: Sutskever et al, 2014

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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Gated Recurrent Units (GRU)

■ The update gate z selects
whether the hidden state is to
be updated with a new hidden
state h̃.

■ The reset gate r decides
whether the previous hidden
state is ignored.

Gated Recurrent Unit (GRU).
Source: Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine
Translation. Cho et al
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Attention with a Bidirectional RNN

Bahdanau et al, 2014 apply a
feed-forward network and
softmax to the encoder hidden
state of each time step of the
input (⊕ the previous decoder
hidden state).
This computes a separate “soft
attention” weighting αt,j for each
encoder hidden state at t, which
increases the quality of the
context vector during each step
of the decoder.

https://arxiv.org/abs/1409.0473
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Attention with an LSTM

Combines LSTM
encoder-decoder
architecture of Sutskever
et al, 2014 and soft
attention mechanism of
Bahdanau et al, 2014 to
learn to predict the output
of a constituency parser.

Source: Grammar as a Foreign Language, Vinyals et al,
2014

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1412.7449
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Gradient Clipping

if ||g|| > v do g← gv
||g||

Source: www.deeplearningbook.org
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Regularizing to Encourage Information Flow

Pascanu et al (2013) proposed a regularization term to encourage
the flow of gradients during BPTT.

Ω =
∑

t

(
||(∇h(t)L) ∂h(t)

∂h(t−1) ||
||∇h(t)L||

− 1

)2

What does this do?

https://arxiv.org/abs/1211.5063
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Clipping Gradients and Encouraging Information Flow

Rate of success for solving the temporal order problem versus log
of sequence length. SGD: Vanilla SGD, SGD-C : SGD with

gradient clipping, SGD-CR: SGD with clipping and information
flow regularization Source: On the Difficulty of Training Recurrent Neural

Networks, Pascanu et al, 2013

https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1211.5063
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Memory Networks

Weston et al 2014 introduced
Memory Networks.

Memory Network versus previous
models on question-answering task

Memory Network versus an RNN on synthetic sentence dataset
(precursor to bAbI?)

https://arxiv.org/abs/1410.3916
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bAbI Tasks Dataset

Weston et al, 2016 introduced a dataset of 20 tasks designed to
evaluate the ability of an agent to understand and reason with
natural language. [download]

Examples of bAbI tasks

https://arxiv.org/abs/1502.05698
https://research.fb.com/downloads/babi/
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Neural Turing Machines

During each update cycle, the controller network receives inputs
from an external environment and emits outputs in response. It
also reads to and writes from a memory matrix via a set of parallel
read and write heads. The dashed line in the figure below indicates
the division between the NTM circuit and the outside world.

NTMs have been shown to
learn simple algorithms
such as sorting, copying
and associative recall
based on input and output
examples.

Neural Turing Machine
Source: Neural Turing Machines. Graves et al
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Differentiable Neural Computer (DNC)

DNC memory supports selective writes, unlike Memory Networks and
Pointer Networks. Source: https://deepmind.com/blog/differentiable-neural-computers/
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