# Neural Networks and Deep Learning Unsupervised, Representation, and Deep Learning

Nicholas Dronen

Department of Computer Science dronen@colorado.edu

February 25, 2019



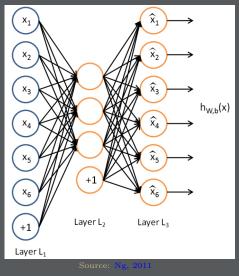
University of Colorado Boulder

Autoencoders Undercomplete Autoencoders Regularized Autoencoders Sparse Autoencoders Denoising Autoencoders Contractive Autoencoders Representational Power, Layer Size and Depth Learning Manifolds with Autoencoders Applications of Autoencoders Representation Learning Greedy Layer-Wise Unsupervised Pretraining Semi-Supervised Disentangling of Causal Factors Distributed Representations Exponential Gains from Depth Providing Clues to Discover Underlying Causes



#### Autoencoders

- A typical autoencoder maps input x to an output reconstruction x̂ through an internal representation h.
- The encoder, f, learns the stochastic mapping p<sub>encoder</sub>(h|x) and the decoder, g, learns p<sub>decoder</sub>(x|h)



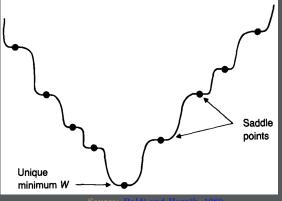


- In an *undercomplete* autoencoder, the code h has lower dimensionality than the input x.
- The loss function  $L(\mathbf{x}, g(f(\mathbf{x}))$  penalizes  $g(f(\mathbf{x}))$  for being different from  $\mathbf{x}$
- In this scenario, h is constrained and the encoder must learn the essential features of the data.



## Linear Autoencoders

When encoder and decoder are linear and L is mean squared error, an undercomplete autoencoder learns to span the same *subspace* as PCA. How do PCA and a linear autoencoder differ?



Source: Baldi and Hornik, 1989



Overcomplete Autoencoders

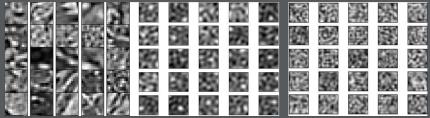
- In an *overcomplete* autoencoder, the code h has greater dimensionality than the input x.
- Overcompleteness can cause overfitting. How?
- The (compound) loss function of a regularized autoencoder contains a term that encourages the model to learn a mapping from inputs to outputs that is richer than the identity, via:
  - » Sparse representation
  - » Robustness to noise
  - $\,\,$  Minimization of the encoder gradient with respect to the input.



Figure 1: Regularization forces the auto-encoder to become less sensitive to the input, but minimizing reconstruction error forces it to remain sensitive to variations along the manifold of high density. Hence the representation and reconstruction end up capturing well variations on the manifold while mostly ignoring variations orthogonal to it.

Source: Alain and Bengio, 2013





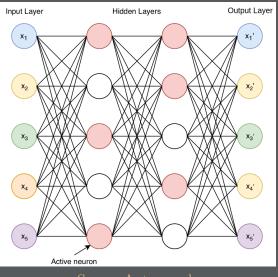
Source: Vincent et al. 2010 Regular autoencoder trained on natural image patches. Left: some of the 12×12 image patches used for training. Middle: filters learnt by a regular under-complete autoencoder (50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt by a regular over-complete autoencoder (200 hidden units). The under-complete autoencoder appears to learn rather uninteresting local blob detectors. Filters obtained in the overcomplete case have no recognizable structure, looking entirely random.



- The training of a sparse autoencoder involves a sparsity penalty Ω(h) on code layer h, in addition to reconstruction layer.
  L(x, g(f(x)) + Ω(h)
- Advantages of sparsity (Source: Glorot, 2011)
  - » Information disentangling
  - » Efficient variable-size representation.
  - » Linear separability.
  - » Distributed but sparse.

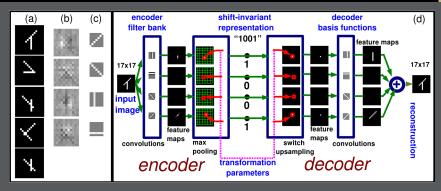


#### REGULARIZED AUTOENCODERS | Sparse Autoencoders



Sparse Autoencoder





Left Panel: (a) sample images from the "two bars" dataset. Each sample contains two intersecting segments at random orientations and random positions. (b) Non-invariant features learned by an auto-encoder with 4 hidden units. (c) Shift-invariant decoder filters learned by the proposed algorithm. The algorithm finds the most natural solution to the problem. Right Panel (d): architecture of the shift-invariant unsupervised feature extractor applied to the two bars dataset. The encoder convolves the input image with a filter bank and computes the max across each feature map to produce the invariant representation. The decoder produces a



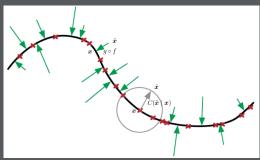
University of Colorado Boulder

Denoising Autoencoders

A denoising autoencoder minimizes  $L(x, g(f(\hat{x})))$ , where  $\hat{x}$  is a copy of x that has been corrupted by some form of noise.

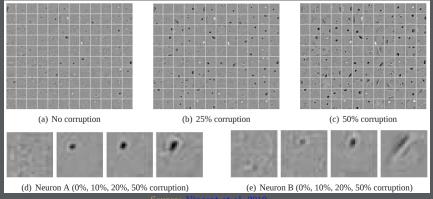


Image from MNIST dataset corrupted by masking noise



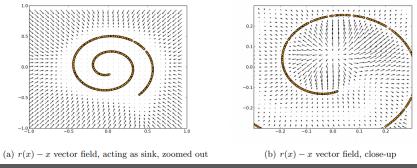
A denoising autoencoder is trained to map a corrupted data point  $\hat{x}$  to the original data point x





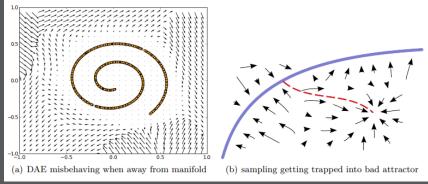
Source: Vincent et al, 2010





Source: Alain and Bengio, 2013



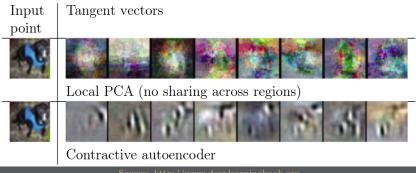


Source: Alain and Bengio, 2013



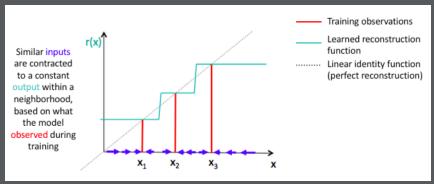
The regularization term of the contractive autoencoder minimizes the gradient of f with respect to  $\mathbf{x}$ .

$$\Omega(\mathbf{h}) = \lambda \left\| \frac{\partial f(\mathbf{x})}{\mathbf{x}} \right\|_{F}^{2}$$



Source: http://www.deeplearningbook.org





Source: Alain and Bengio, 2013



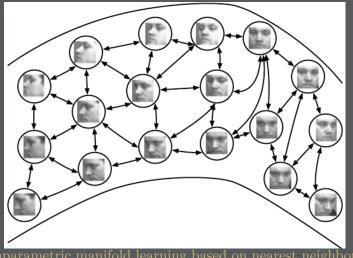
Experimentally, deep autoencoders yield much better compression than corresponding shallow or linear autoencoders.

5678 234 234567 3456

Source: Hinton and Salakhutdinov, 2006

- 1. A random test image from each class.
- 2. Reconstructions by a 30-dimensional autoencoder.
- 3. Reconstructions by 30-dimensional logistic PCA.
- 4. Reconstructions by 30-dimensional standard PCA

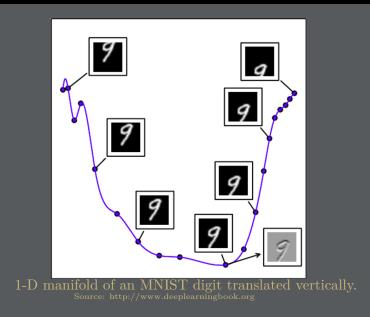




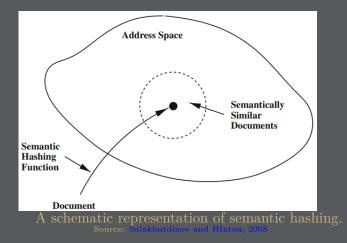
Nonparametric manifold learning based on nearest neighbor graph. Source: http://www.deeplearningbook.org



#### LEARNING MANIFOLDS WITH AUTOENCODERS









### Spectral Hashing



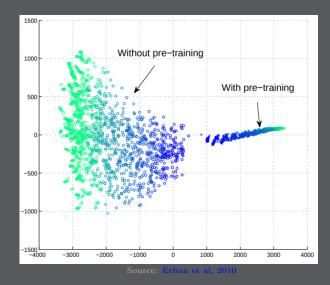
Retrieval results on a dataset of 80 million images using the original gist descriptor, and hash codes build with spectral hashing with 32 bits and 64 bits. Source: Turcatus et al. 2008



## Greedy Layerwise Unsupervised Pretraining - $(\mathbf{GLUP})$

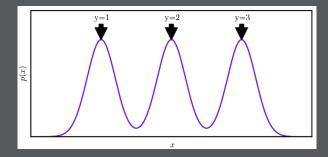
- Greedy it optimizes each piece of the solution independently, one piece at a time.
- Layerwise the independent pieces are the layers of the network, the k-th layer is trained while keeping the previous ones fixed.
- Unsupervised each layer is trained with an unsupervised representation learning algorithm.
- Pretraining it is supposed to be only a first step before a joint training algorithm is applied to fine-tune all the layers together.
- This is not commonly done these days. Why not?





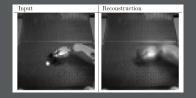


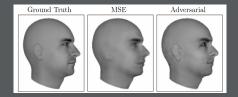
A good representation is one that reveals the underlying causal factors of the data. If finding  $p(\mathbf{x})$  makes finding  $p(y|\mathbf{x})$  easier, then semi-supervised learning can help.



Source: http://www.deeplearningbook.org



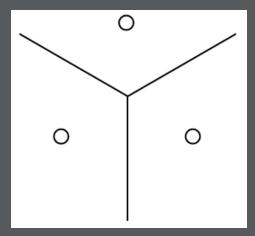




Source: http://www.deeplearningbook.org



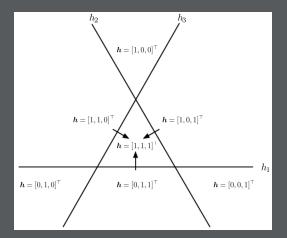
### Non-Distributed Representations



With non-distributed representations, the data can only be encoded naively. Decision trees and k-nearest neighbors work this way.

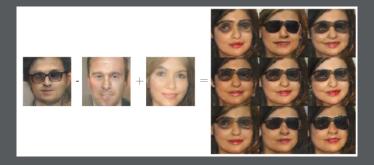


### Distributed Representations



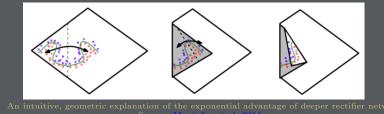
Distributed representations partition/encode the data such that similarity structure naturally emerges.





Source: http://www.deeplearningbook.org





- Deep models encode a very general belief that the function we want to learn should involve composition of several simpler functions.
- Empirically, greater depth does seem to result in better generalization for a wide variety of tasks.



#### Generic Regularization strategies

- Smoothness
- Linearity
- Multiple explanatory factors
- Causal factors
- Depth, or a hierarchical organization of explanatory factors
- Shared factors across tasks
- Manifolds
- Natural clustering
- Temporal and spatial coherence
- Sparsity
- Simplicity of factor dependencies

