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Autoencoders

■ A typical autoencoder
maps input x to an
output reconstruction x̂
through an internal
representation h.

■ The encoder, f, learns
the stochastic mapping
pencoder(h|x) and the
decoder, g, learns
pdecoder(x|h)

Source: Ng, 2011

http://ailab.chonbuk.ac.kr/seminar_board/pds1_files/sparseAutoencoder.pdf
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■ In an undercomplete autoencoder, the code h has lower
dimensionality than the input x.

■ The loss function L(x, g(f(x)) penalizes g(f(x)) for being
different from x

■ In this scenario, h is constrained and the encoder must learn
the essential features of the data.
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Linear Autoencoders

When encoder and decoder are linear and L is mean squared error,
an undercomplete autoencoder learns to span the same subspace as
PCA. How do PCA and a linear autoencoder differ?

Source: Baldi and Hornik, 1989

http://www.vision.jhu.edu/teaching/learning/deeplearning18/assets/Baldi_Hornik-89.pdf
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Overcomplete Autoencoders

■ In an overcomplete autoencoder, the code h has greater
dimensionality than the input x.

■ Overcompleteness can cause overfitting. How?
■ The (compound) loss function of a regularized autoencoder

contains a term that encourages the model to learn a mapping
from inputs to outputs that is richer than the identity, via:
» Sparse representation
» Robustness to noise
» Minimization of the encoder gradient with respect to the input.

Source: Alain and Bengio, 2013

https://arxiv.org/pdf/1211.4246.pdf
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Source: Vincent et al, 2010 Regular autoencoder trained on natural image patches. Left: some
of the 12×12 image patches used for training. Middle: filters learnt by a regular under-complete

autoencoder (50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt
by a regular over-complete autoencoder (200 hidden units). The under-complete autoencoder

appears to learn rather uninteresting local blob detectors. Filters obtained in the overcomplete
case have no recognizable structure, looking entirely random.

http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf


Regularized Autoencoders | Sparse Autoencoders 8

Sparse Autoencoders

■ The training of a sparse autoencoder involves a sparsity penalty
Ω(h) on code layer h, in addition to reconstruction layer.
L(x, g(f(x)) + Ω(h)

■ Advantages of sparsity (Source: Glorot, 2011)

» Information disentangling.
» Efficient variable-size representation.
» Linear separability.
» Distributed but sparse.

http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
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Sparse Autoencoder
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Left Panel: (a) sample images from the “two bars” dataset. Each sample
contains two intersecting segments at random orientations and random
positions. (b) Non-invariant features learned by an auto-encoder with 4
hidden units. (c) Shift-invariant decoder filters learned by the proposed
algorithm. The algorithm finds the most natural solution to the problem.
Right Panel (d): architecture of the shift-invariant unsupervised feature
extractor applied to the two bars dataset. The encoder convolves the
input image with a filter bank and computes the max across each feature
map to produce the invariant representation. The decoder produces a
reconstruction by taking the invariant feature vector (the “what”), and
the transformation parameters (the “where”). Reconstructions is
achieved by adding each decoder basis function (identical to encoder
filters) at the position indicated by the transformation parameters, and
weighted by the corresponding feature component.
Source: Ranzato, 2007

http://yann.lecun.com/exdb/publis/pdf/ranzato-cvpr-07.pdf
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Denoising Autoencoders

A denoising autoencoder minimizes L(x, g(f(x̂)), where x̂ is a copy
of x that has been corrupted by some form of noise.

Image from MNIST dataset corrupted by masking noise

A denoising autoencoder is trained to map a corrupted data point x̂ to the original data point x
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Source: Vincent et al, 2010

http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
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Source: Alain and Bengio, 2013

https://arxiv.org/pdf/1211.4246.pdf
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Source: Alain and Bengio, 2013

https://arxiv.org/pdf/1211.4246.pdf
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The regularization term of the contractive autoencoder minimizes
the gradient of f with respect to x.

Ω(h) = λ

∥∥∥∥∂f(x)
x

∥∥∥∥2
F

Source: http://www.deeplearningbook.org



Regularized Autoencoders | Contractive Autoencoders 16

Source: Alain and Bengio, 2013

https://arxiv.org/pdf/1211.4246.pdf
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Experimentally, deep autoencoders yield much better compression
than corresponding shallow or linear autoencoders.

Source: Hinton and Salakhutdinov, 2006

1. A random test image from each class.
2. Reconstructions by a 30-dimensional autoencoder.
3. Reconstructions by 30-dimensional logistic PCA.
4. Reconstructions by 30-dimensional standard PCA

https://www.cs.toronto.edu/~hinton/science.pdf


Learning Manifolds with Autoencoders 18

Nonparametric manifold learning based on nearest neighbor graph.
Source: http://www.deeplearningbook.org
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1-D manifold of an MNIST digit translated vertically.
Source: http://www.deeplearningbook.org
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Semantic Hashing

A schematic representation of semantic hashing.
Source: Salakhutdinov and HInton, 2008

https://www.cs.cmu.edu/~rsalakhu/papers/sdarticle.pdf
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Spectral Hashing

Retrieval results on a dataset of 80 million images using the
original gist descriptor, and hash codes build with spectral hashing

with 32 bits and 64 bits. Source: Torralba et al, 2008

https://people.csail.mit.edu/torralba/publications/spectralhashing.pdf
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Greedy Layerwise Unsupervised Pretraining - (GLUP)

■ Greedy - it optimizes each piece of the solution independently,
one piece at a time.

■ Layerwise - the independent pieces are the layers of the network,
the k-th layer is trained while keeping the previous ones fixed.

■ Unsupervised - each layer is trained with an unsupervised
representation learning algorithm.

■ Pretraining - it is supposed to be only a first step before a joint
training algorithm is applied to fine-tune all the layers together.

This is not commonly done these days. Why not?
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Source: Erhan et al, 2010

http://www.jmlr.org/papers/volume11/erhan10a/erhan10a.pdf


Representation Learning | Semi-Supervised Disentangling of Causal Factors 24

A good representation is one that reveals the underlying causal
factors of the data. If finding p(x) makes finding p(y|x) easier,
then semi-supervised learning can help.

Source: http://www.deeplearningbook.org
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Source: http://www.deeplearningbook.org
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Non-Distributed Representations

With non-distributed representations, the data can only be encoded
naively. Decision trees and k-nearest neighbors work this way.
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Distributed Representations

Distributed representations partition/encode the data such that
similarity structure naturally emerges.
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Source: http://www.deeplearningbook.org
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An intuitive, geometric explanation of the exponential advantage of deeper rectifier networks.
Source: Montufar et al, 2014

■ Deep models encode a very general belief that the function we
want to learn should involve composition of several simpler
functions.

■ Empirically, greater depth does seem to result in better
generalization for a wide variety of tasks.

https://arxiv.org/pdf/1402.1869.pdf
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Generic Regularization strategies

■ Smoothness
■ Linearity
■ Multiple explanatory factors
■ Causal factors
■ Depth, or a hierarchical organization of explanatory factors
■ Shared factors across tasks
■ Manifolds
■ Natural clustering
■ Temporal and spatial coherence
■ Sparsity
■ Simplicity of factor dependencies
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