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AUTOENCODERS

®m A typical autoencoder
maps input x to an
output reconstruction x
through an internal
representation h.

® The encoder, f, learns
the stochastic mapping
p(m,(i()(l(c/‘(h|x) and the
decoder, g, learns
p([(i(i()d(ﬂ'(x‘h)
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http://ailab.chonbuk.ac.kr/seminar_board/pds1_files/sparseAutoencoder.pdf

UNDERCOMPLE OENCODERS
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UNDERCOMPLETE AUTOENCODERS

When encoder and decoder are linear and L is mean squared error,
an undercomplete autoencoder learns to span the same subspace as
PCA. How do PCA and a linear autoencoder differ?

minimum W ——»

Source:


http://www.vision.jhu.edu/teaching/learning/deeplearning18/assets/Baldi_Hornik-89.pdf

REGULARIZED AUTOENCODERS

In an overcomplete autoencoder, the code h has greater
dimensionality than the input x.

Overcompleteness can cause overfitting. How?

The (compound) loss function of a regularized autoencoder
contains a term that encourages the model to learn a mapping
from inputs to outputs that is richer than the identity, via:

» Sparse representation

» Robustness to noise

» Minimization of the encoder gradient with respect to the input.

Figure 1: Regularization forces
minimizing reconstrt
manifold of high den:

turing well variations on the manifc
it.

Source:


https://arxiv.org/pdf/1211.4246.pdf

REGULARIZED AUTOENCODERS
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Source: Regular autoencoder trained on natural image patches. Left: some
of the 12X 12 image patches used for training. Middle: filters learnt by a regular under-complete

autoencoder (50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt
by a regular over-complete autoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninter:

ting local blob detectors. Filters obtained in the overcomplete
case have no recognizable structure, looking entirely random.



http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

REGULARIZED AUTOENCODERS | Sran

Sparse Autoencoders

Glorot, 2011
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http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
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REGULARIZED AUTOENCODERS
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Left Panel: (a) sample images from the “two bars” dataset. Each sample
contains two intersecting segments at random orientations and random
positions. (b) Non-invariant features learned by an auto-encoder with 4
hidden units. (c) Shift-invariant decoder filters learned by the proposed
algorithm. The algorithm finds the most natural solution to the problem.
Right Panel (d): architecture of the shift-invariant unsupervised feature
extractor applied to the two bars dataset. The encoder convolves the
input image with a filter bank and computes the max across each feature
map to produce the invariant representation. The decoder produces a
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http://yann.lecun.com/exdb/publis/pdf/ranzato-cvpr-07.pdf

REGULARIZED AUTOENCODERS

A denoising autoencoder minimizes L(z, g(f(Z)), where Z is a copy
g g\, ; P!

of z that has been corrupted by some form of noise.
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Image from MNIST dataset corrupted by masking noise

.~
.

WG

A denoising autoencoder is trained to map a corrupted data point Z to the original data point z
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REGULARIZED AUTOENCODERS

(a) No corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption)

Source:

(b) 25% corruption

(e) Neuron B (0%, 10%, 20%, 50% corruption)


http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
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https://arxiv.org/pdf/1211.4246.pdf
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https://arxiv.org/pdf/1211.4246.pdf

REGULARIZED AUTOENCODERS

The regularization term of the contractive autoencoder minimizes
the gradient of f with respect to x.

X F

Q(h) = A

Contractive autoencoder

Source: http://www.deeplearningbook.org
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REGULARIZED AUTOENCODERS

Similar inputs

are contracted
to a constant

It within a
neighborhood,
based on what

the model
observed during
training

Source:

Training observations

Learned reconstruction
function

Linear identity function
(perfect reconstruction)



https://arxiv.org/pdf/1211.4246.pdf



https://www.cs.toronto.edu/~hinton/science.pdf

LEARNING MANIFOLDS WITH AUTOENCODERS

Nonparametric manifold learning based on nearest neighbor graph.

Source: http://www.deeplearningbook.org
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LEARNING MANIFOLDS WITH AUTOENCODERS

1-D manifold of an MNIST digit translated vertically.

Source: http://www.deeplearningbook.org
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APPLICATIONS OF AUTOENCODERS

Address Space

Semantic
Hashing
Function

Document
A schematic representation of

Source:

semantic hashing.
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https://www.cs.cmu.edu/~rsalakhu/papers/sdarticle.pdf

APPLICATIONS OF AUTOENCODERS

Gist neighbors Spectral hashlng 32 bits 64 bits

Retmeval Tesults on a dataset of 80 million i 1mageb using the
original gist descriptor, and hash codes build with spectral hashing

Wlth 32 bltS and 64 blts Source:
o


https://people.csail.mit.edu/torralba/publications/spectralhashing.pdf

REPRESENTATION LEARNING ‘ Gr  LAYER-WISE UNSUPERVISED PRETRAINING

Greedy Layerwise Unsupervised Pretraining - (GLUP)
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REPRESENTATION LE!

ARNING

Without pre-training

Source:

With pre—training



http://www.jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

REPRESENTATION LEARNING

A good representation is one that reveals the underlying causal
factors of the data. If finding p(x) makes finding p(y|x) easier,
then semi-supervised learning can help.

Source: http://www.deeplearningbook.org
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REPRESENTATION LEARNING

Ground Truth Adversarial

LA 1]

Source: http://www.deeplearningbook.org
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REPRESENTATION LEARNING

With non-distributed representations, the data can only be encoded
naively. Decision trees and k-nearest neighbors work this way:.
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REPRESENTATION LEARNING

h=1[1,0,0"

h=1[1,0,1]"

hy

h=10,0,1]"

Distributed representations partition/encode the data such that
similarity structure naturally emerges.
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REPRESENTATION LEARNING

Source: http://www.deeplearningbook.org
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REPRESENTATION LEARNING

An intuitive, geometric explanation of the exponential advantage of deeper rectifier networks.
Source:

B Deep models encode a very general belief that the function we
want to learn should involve composition of several simpler
functions.

® Empirically, greater depth does seem to result in better
generalization for a wide variety of tasks.
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https://arxiv.org/pdf/1402.1869.pdf

ION LEARNING | Provini

Generic Regularization strategies
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