
AUTOREGRESSION AND 
NORMALIZING FLOWS

CSCI 5922 - NEURAL NETWORKS AND 
DEEP LEARNING



MIDTERM

▸ Midterm 

▸ Scoring is underway - aiming for end of this week. 

▸ Make-up exam is this week. Contact Amruta for logistics. 

▸ Exam review will be after make-up. 

▸ Project proposal feedback is mostly done. 

▸ Some tolerance for risky proposals 

▸ Some hard constraints, many about baselines 

▸ You do not need to show the deep learning approach is better!



ASSIGNMENT 7: CONVNETS

▸ Task is to implement the forward and backward passes of a simple 
convolutional network. 

▸ The use of the Toeplitz matrix is not allowed. The Toeplitz matrix 
allows convolution to be computed as matrix multiplication. See 
Section 4.1of A Guide to Convolution Arithmetic for Deep Learning. 

▸ The backward pass requires the transposed convolution (also see 
the convolution arithmetic guide). 

▸ The whole process can be computationally expensive. The use of an 
acceleration library like Numba is recommended.

https://arxiv.org/abs/1603.07285


OVERVIEW

▸ Modeling High-Dimensional Discrete Data with Multi-
Layer Neural Networks, Bengio and Bengio, 1999 [link] 

▸ Masked Autoencoder for Distribution Estimation (MADE), 
Germain et al, 2015 [link] 

▸ Improved Variational Inference with Inverse 
Autoregressive Flow, Kingma et al, 2016 [link]

https://papers.nips.cc/paper/1679-modeling-high-dimensional-discrete-data-with-multi-layer-neural-networks
http://proceedings.mlr.press/v37/germain15.html
https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow


AUTOREGRESSION WITH NEURAL NETWORKS

BENGIO & BENGIO, 2000 
MODELING HIGH-DIMENSIONAL DISCRETE DATA WITH NEURAL NETWORKS

P(Z1, …, Zn) =
n

∏
i=1

P(Zi |Parentsi)

In a graphical model or Bayesian network, the joint probability of 
the random variables in the model is the product of the probability 
of each variable conditioned on its parents.

https://papers.nips.cc/paper/1679-modeling-high-dimensional-discrete-data-with-multi-layer-neural-networks


AUTOREGRESSION WITH NEURAL NETWORKS

BENGIO & BENGIO, 2000 
MODELING HIGH-DIMENSIONAL DISCRETE DATA WITH NEURAL NETWORKS

P(Z1, …, Zn) =
n

∏
i=1

P(Zi |Z1, …, Zi−1)

Fully-connected 
“left-to-right” 
graphical model

https://papers.nips.cc/paper/1679-modeling-high-dimensional-discrete-data-with-multi-layer-neural-networks


AUTOREGRESSION WITH NEURAL NETWORKS

BENGIO & BENGIO, 2000 
MODELING HIGH-DIMENSIONAL DISCRETE DATA WITH NEURAL NETWORKS

P(Zi |Z1, …, Zi−1) ∼ gi

Bengio and Bengio 
create an architecture 
for autoregressive 
modeling that 
exploits the universal 
approximation 
capability of neural 
networks.

https://papers.nips.cc/paper/1679-modeling-high-dimensional-discrete-data-with-multi-layer-neural-networks


MASKED AUTOREGRESSION

GERMAIN ET AL, 2015 
MASKED AUTOENCODER FOR DISTRIBUTION ESTIMATION (MADE)

h(x) = g(b + W ⋅ MW)x)
x̂ = σ(c + (W ⋅ MV)h(x)

http://proceedings.mlr.press/v37/germain15.html


GENERATIVE AUTOREGRESSIVE NETWORKS

VAN DEN OORD ET AL, 2016 
PIXEL RECURRENT NEURAL NETWORKS

The target of each pixel is 
categorical, not real, and the 
output over each pixel is a 
softmax over 8-bit unsigned 
integers.

P(x) =
n2

∏
i=1

p(xi |x1, …, xi−1)

The probability of e.g. an entire 
image is the product of the 
conditional probabilities of each 
pixel given the preceding pixels.

The native implementation of this is 
several LSTMs stacked atop one 
another. As you can imagine, it is 
quite slow (~50 sec/image).

https://arxiv.org/abs/1601.06759


GENERATIVE AUTOREGRESSIVE NETWORKS - UNCONDITIONAL GENERATION

VAN DEN OORD ET AL, 2016 
PIXEL RECURRENT NEURAL NETWORKS

https://arxiv.org/abs/1601.06759


GENERATIVE AUTOREGRESSIVE NETWORKS - IMAGE COMPLETION

VAN DEN OORD ET AL, 2016 
PIXEL RECURRENT NEURAL NETWORKS

Why does this 
generate better 
images than those  
generated from 
scratch?

https://arxiv.org/abs/1601.06759


NORMALIZING FLOWS REDUX

REZENDE AND MOHAMED, 2015 
VARIATIONAL INFERENCE WITH NORMALIZING FLOWS 

The Gaussian posterior distribution used in e.g. a 
variational auto encoder is, effectively, a high-bias 
model. 

We would like more flexible distributions that are 
tractable.  

Normalizing flows provide the ability to transform 
(simple, tractable) distributions into more complex 
distributions while being both invertible — requires log 
determinant of the Jacobian to be defined — and fast — 
because the determinant of the Jacobian is O(d3)

https://arxiv.org/abs/1505.05770


NORMALIZING FLOWS REDUX

REZENDE AND MOHAMED, 2015 
VARIATIONAL INFERENCE WITH NORMALIZING FLOWS 

q(z) = q(z) det
∂f
∂z

−1

For a given transformation f of a latent variable z:

For a series of transformations zK = fK ∘ … ∘ f2 ∘ f1(z0)

ln qK(zK) = ln q0(z0) −
K

∑
k=1

ln det
∂fk

∂zk−1

https://arxiv.org/abs/1505.05770


NORMALIZING FLOWS REDUX

REZENDE AND MOHAMED, 2015 
VARIATIONAL INFERENCE WITH NORMALIZING FLOWS 

Encoder Network Encoder Network

KL(N(0,I ), N(μ, σ)) KL(N(0,I ), N(μ, σ))

Decoder Network

μ + σ ⋅ ϵ

μ1 + σ1 ⋅ ϵ1
μ2 + σ2 ⋅ ϵ2…

μK + σK ⋅ ϵK

https://arxiv.org/abs/1505.05770


TYPES OF FLOWS

GENERAL NORMALIZING FLOWS

VOLUME-PRESERVING FLOWS

The Jacobian determinant is not guaranteed to 
be 0. The transformations are less constrained 
and can be more flexible. 

Examples: Planar flows, Inverse Autoregressive 
Flows

If the transformation preserves volume, the 
Jacobian determinant is 0. The challenge of 
designing a volume-preserving flow is making 
the transformation flexible. 

Examples: NICE, RealNVP, Householder Flow

INFINITESSIMAL FLOWS
Recall the notion of increasing the 
depth of the sequence of 
transformations to infinity such that 
each transformation can be seen as 
continuous and modeled as a partial 
differential equation. This will show 
up later when Teo Price-
Broncucia presents ODE Nets.



PLANAR FLOWS

REZENDE AND MOHAMED, 2015 
VARIATIONAL INFERENCE WITH NORMALIZING FLOWS 

A planar flow is a transformation of the form f (z) = z + uh(wTz + b)

with elementwise non-linearity h, free parameters λ = w ∈ ℝD, u ∈ ℝD, b ∈ ℝ

and log determinant

ψ (z) = h′�(wTz + b)w

det
∂f
∂z

= |det(I + uψ (z)T) | = |1 + uTψ (z) |

How is the planar flow limited?

https://arxiv.org/abs/1505.05770


PLANAR FLOWS

REZENDE AND MOHAMED, 2015 
VARIATIONAL INFERENCE WITH NORMALIZING FLOWS 

A planar flow is a transformation of the form f (z) = z + uh(wTz + b)

with element-wise non-linearity h, free parameters λ = {w ∈ ℝD, u ∈ ℝD, b ∈ ℝ}

and log determinant

ψ (z) = h′�(wTz + b)w

det
∂f
∂z

= |det(I + uψ (z)T) | = |1 + uTψ (z) |

How is the planar flow limited?

[It] can be interpreted as a MLP with a bottleneck hidden layer with a 
single unit. Since information goes through the single bottleneck, a 
long chain of transformations is required to capture high-dimensional 
dependencies. - Kingma et al, 2016, p. 3

https://arxiv.org/abs/1505.05770
https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow


INVERSE AUTOREGRESSIVE FLOWS

KINGMA ET AL, 2016 
IMPROVED VARIATIONAL INFERENCE WITH INVERSE AUTOREGRESSIVE FLOW [CODE] 

y0 = μ0 + σ0ϵ0

yi = μi(y1:i−1) + σi(y1:i−1 ⋅ ϵi)
with inverse

ϵ = (y − μ(y))/σ(y)

The transformation 

has three virtues. 

It addresses the single-unit bottleneck of planar flows. 

The  inverse can be parallelized, because the elements of ε 
do not depend on one another. 

And the log determinant, due to the Jacobian being lower 
triangular with a simple diagonal, is simple:

log det
dϵ
dy

=
D

∑
i=1

− logσi(y)

http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow
https://github.com/openai/iaf


NEURAL AUTOREGRESSIVE FLOWS

HUANG ET AL, 2019 
NEURAL AUTOREGRESSIVE FLOWS [CODE] 

https://www.youtube.com/watch?v=r_lpF6n9Fi8

https://arxiv.org/abs/1804.00779
https://github.com/CW-Huang/NAF
https://www.youtube.com/watch?v=r_lpF6n9Fi8


OVERVIEW

▸ Glow: Generative Flow With Invertible 1x1 Convolutions 
[link] 

▸ VideoFlow: A Flow-Based Generative Model for Video, 
Kumar et al, 2019 [link] 

▸ Masked Autoregressive Flow for Density Estimation [link] 

▸ Density Estimation using Real NVP, Dinh et al, 2017 [link] 

▸ Sylvester Normalizing Flows for Variational Inference [link]

https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1903.01434
http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation
http://www.apple.com
https://arxiv.org/abs/1803.05649

