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Neural Ordinary Differential Equations

By Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt,

David Duvenaud.
o From Vector Institute at University of Toronto.

Won best paper at NIPS 2018 in December.
Builds on work as old as 1988 when LeCun et al. proposed
adjoint method for continuous time neural networks.



Gan we think of
RNN as an ODE?




Euler Method
Yn+l = Yn T hf(tna yn)

A way to solve first order ODE
when given initial value

his step size from ¢t tot .
Recurrent because definition of
y at time n+1refers back to
same definition at time n.



RNN
h: 1 =h; + f(hy, 0;)

In textbook:

Recurrent because definition of
h at time t+1 refers back to
same definition at time t.
“Dynamical System”

Looks very similar to Euler
method



e If we add more and more layers and take
smaller and smaller steps: 4

dh(t) _ 2
7 — f(h(t)v 2 9) X

Residual Network ODE Network

/

e With input layer h(0O) the output layer h(T) is -5 0 5 -5 0 5
. . . Input/Hidden/Output Input/Hidden/Output
defined as the solution to this ODE
problem. Figure 1: Left: A Residual network defines a
e Can use ODE solver where the selected discrete sequence of finite transformations.

Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

accuracy is the equivalent of depth.



Why use ODE
solvers?




Advantages

e Memory Efficiency:

o Don’t have to store all intermediate quantities of forward pass.
o  Constant memory as function of depth!

e Adaptive Computation

o Don’t have to use Euler’'s method, can use a variety of modern ODE solvers.
o Can choose lower accuracy after training for low power/real-time applications.

e Parameter Efficiency
e Normalizing Flows

e Continuous time series models
o Don’t need to artificially discretize observations.



How Do We Do Backpropagation?

e We want gradients with respect to theta and the starting value z(t ).
e We will define adjoint states of the form:

a(t) = dczift) Canshow do‘illit) — _a(t) 0f(z(t),t,0)

e We can define analogous adjoints for theta and t

dL dL

ag(t) = W(t), at(t) . dt(t)



Backpropagation cont.

e Combine into an augmented system

t 1

7 z,0,1
% |:9} (t) = faug([zaeat]) - |:f([ 0 ]):| 89—@):0

_a_
dL dL

Agug +— ag | ae(t) = at(t) = —_—
ay do(t) dit(t)



Backpropagation cont.

of of of
O faug oz 086 Ot da(t) df(z(t),t,0)
9z, 0,1] [g 0 8] ) a2 0z(t)
daaug(t) o afaug L
—B = [a(t) ag(t) au(t )] [ 0.1 (t) = — [a% ag—g ag—{] (t)

This augmented adjoint state is solved again with an ODE solver

e Then the relevant gradients are found by integrating backward




Backpropagation cont.

L o 9f(a(t), t,0)
2% = ay(to) = /t an SIS a

dL dL * a(n 20 (=), 1,6)
qte = atn)fEtn),tn,0) - =ar(to) = a(ty) - /tN e








https://docs.google.com/file/d/15Hazf7im081bo0wHELXOogTSgHVAxw8g/preview
https://docs.google.com/file/d/1AlWBwgHXwn256TCXvxhD8QHict6Bd8sb/preview

Trajectories 5.6 Phase Portrait
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Drawbacks +

Challenges

Minibatching not so

straightforward.

Unique solution?

o With Lipshitz
nonlinearities, yes.

Must choose error tolerance

on forward/backward passes

Numerical error from

backwards pass?

o Not seen in application






