
Neural Machine 
Translation models



High level overview of Machine 
Translation Models
● We want to maximize the likelihood of a given translation 

given a source sentence 

● Where e is the target language (i.e. english) and f is the 
source language (i.e. foreign)

● We can think of the likelihood term as a translation 
model and the prior as a language model for the target 
language



Traditional Machine Translation 
Pipeline



An end to end RNN 
encoder-decoder architecture
● For the encoder stage, the source language is processed token by token 

by an RNN model (LTSM or similar)

● The Decoder stage acts just as a language model by generating translated 

words one at a time and using the previous word as input to generate the 

next word.

● We use the hidden state of the final encoder time step to initialize the 

decoder’s hidden state (known as a context vector)

● Generation stops when the <EOS> token is generated.



Sequence to Sequence Learning 
with Neural Networks (2014)
Ilya Sutskever, Oriol Vinyals, Quoc V. Le

● Such a simple model was able to be competitive with the 
state of the art phrase based machine translation systems 
at the time

● One trick they employed was to reverse the source 
sequence in the encoder
○ The rationale behind this was that this would put parallel words closer 

together in the encoder-decoder setup.



Drawbacks to this approach

● The encoder needs to be able to compress all the 
information in the source sentence into a single context 
vector to initialize the state of the decoder network.

● This can cause performance to suffer on longer 
sequences.



Neural Machine Translation By Jointly 
Learning to Align and Translate (2015)

Dzmitry Bahdanau, Kyung Hyun Cho, Yoshua Bengio

● The main contribution of this paper was instead of relying 
on a single context vector to represent a source input, 
they introduced the notion of an attention mechanism to 
provide context vectors at each timestep to inform what 
parts of the source sentence were relevant to the output 
at a particular time step.



Attention in the encoder-decoder 
model
● For each time step t in the output sequence

○ We calculate a context vector

Where 



Result: Performs better for 
longer sentences



Visualizing the Attention “Soft 
Alignments”



Attention Is All You Need (2017)

Vaswani et al.

● Google introduces a new architecture that dispenses 
with RNN/CNNs entirely in favor of what is essentially a 
feedforward model.

● Replace RNNs with what they refer to as multi-head self 
attention with positional encoding



Model Architecture

● Consists of two main components
○ encoder/decoder like before

● The RNN stages are now replaced by multi-head self 
attention

● Additionally to capture the sequential nature of the 
input, they add a positional encoding to the input 
embeddings before they enter the encoder/decoder



Scaled Dot-Product Attention
● Multiplicative attention as opposed to the summing 

attention we saw previously (better suited for hardware 
acceleration)

● The inputs to an attention layer are
○ Queries -- Q

○ Keys -- K

○ Values -- V

● Computes the similarity between Q and K.
○ Based on the softmax score, we will weight V accordingly

● Think of K matrix as an index over a set of values V
○ If the Query matches a particular key, it will scale the values V 

accordingly to “retrieve” it



Multi-Head Attention

● For each set of Keys, Values, and Queries, we project 
them into several smaller subspaces with a linear 
transformation

● Apply attention to each “head”, concatenate and project 
again

● This allows each head to attend to different parts of the 
input while maintaining similar computational complexity 
of a larger attention layer.



Understanding Each Attention 
Component
● We can view the attention layer between the 

encoder/decoder just as with the RNN version.
○ Keys/Values come from the encoder and Queries come from the 

decoder

● In the encoder K, V, and Q all come from the input 
embeddings, hence the term self attention

● Similarly the decoder also contains a self attention layer, 
but there is an addition of an autoregressive mask to 
prevent the output from attending to positions in the 
future.



Position-wise Feed-Forward 
Layers
● The output of each main component has what is referred 

to as a position-wise feed-forward network
● For each layer (eg for an encoder layer) we apply the 

following at each position with the same weights

Does this remind you of anything?



Positional Encoding

● Necessary to capture the sequential nature of the input 
now that we have dispensed with 
recurrent/convolutional layers

● The authors tested two methods
○ Learned positional encoding

○ Hand crafted sinusoidal encoding

■ I.e. each dimension of an input vector consists of a different 

frequency sinusoid



Attention Visualizations



Attention Visualizations


