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HISTORY OF FRAMEWORKS

Framework Year
Torch 2002

Theano 2010
Torch7 2011
Theano 2012
Pylearn2 2013

Keras 2015
Torchnet 2015

Framework Year
Autograd 2015
Chainer 2015
MXNet 2015

TensorFlow 2016
Theano 2016
DyNet 2017

PyTorch 2017
Ignite 2018

TensorFlow 2019

FIRST GENERATION
SECOND GENERATION

First full frameworks to support CUDA/GPUs. 

First frameworks to support 
define-by-run automatic 
differentiation.

Wrappers



TORCH - 2002 - HTTP://TORCH.CH

While this version of Torch pre-dates deep learning, it is the 
prototype for contemporary machine learning frameworks. 
Most contemporary deep learning frameworks, consciously or 
not, mimic Torch. 

Torch is written in C++ and supports machine learning 
algorithms like multi-layer neural networks, support vector 
machines, Gaussian mixture models, and hidden Markov 
models. 

It was made available under the BSD license (free to copy and 
commercial use/proprietary modifications are allowed as long 
as attribution is preserved).

http://torch.ch


TORCH - 2002 - HTTP://TORCH.CH

The core API is inspired by object-oriented programming 
and design patterns — specifically, by the notions of 
modularity and separation of interface and 
implementation. The API contains useful abstractions like: 

‣DataSet 

‣Machine 

‣Measurer 

‣ Trainer

http://torch.ch


TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for loading data 

‣ Relieves engineer of need to repeatedly write code to read training data and labels 

‣ Provides an abstraction layer that allows data to be read from any source 

‣ Design pattern: Proxy

DATASET CLASS

http://torch.ch


TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for learning mapping from inputs to targets  

‣ Several learning algorithms supported 

‣ Multi-layer neural network 

‣ Support vector machine 

‣ “Distribution” 

‣ Gaussian mixture model 

‣ Hidden Markov model 

‣ Design pattern: Adapter

MACHINE CLASS

http://torch.ch


TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for measuring the output of the machine 

‣ Loss: mean squared error, log loss 

‣ Metric: accuracy, F1, etc. 

‣ Design pattern: ?

MEASURER CLASS

http://torch.ch


TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for optimizing the Machine 

‣ Stochastic gradient trainer (multi-layer neural network) 

‣ Quadratic constrained trainer (support vector machine) 

‣ Also responsible for ensembling 

‣ To train with/as an ensemble, an ordinary trainer is a delegate of a bagging or 
boosting trainer, e.g. (pseudocode): 

‣ BaggingTrainer(QuadraticConstrainedTrainer(…)) 

‣ BoostingTrainer(StochasticGradientTrainer(…)) 

‣ Design pattern: Controller

TRAINER CLASS

http://torch.ch


ENTER GRAPHICS PROCESSING UNITS

▸ Large-scale deep unsupervised learning using graphics 
processors, Raina, Madhavan, and Ng, 2009 [PDF] 

▸ Deep Big Simple Neural Nets Excel on Handwritten Digit 
Recognition, Ciresan, Meier, Gambardella, and 
Schmidhuber, 2010 [arXiv] 

▸ ImageNet Classification with Deep Convolutional Neural 
Networks, Krizhevsky, Sutskever, and Hinton, 2012

https://dl.acm.org/citation.cfm?id=1553486
https://dl.acm.org/citation.cfm?id=1553486
http://robotics.stanford.edu/~ang/papers/icml09-LargeScaleUnsupervisedDeepLearningGPU.pdf
https://www.mitpressjournals.org/doi/10.1162/NECO_a_00052
https://www.mitpressjournals.org/doi/10.1162/NECO_a_00052
https://arxiv.org/abs/1003.0358
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


ENTER GRAPHICS PROCESSING UNITS

Bergstra et al, Scipy Conference, 2010

The computational 
workhorse of multi-layer 
neural networks is matrix 
multiplication, which has 
complexity O(n^3). 

Matrix multiplication can 
be seen a set of dot 
products between rows 
of the left operand and 
the columns of the right 
operand matrix. Naively, 
each dot product can be 
dispatched to a different 
core on a GPU. 

With cores numbering in 
the thousands, GPUs can 
run many operations  on 
matrices faster than 
CPUs can, even with 
slower clock cycles.

https://conference.scipy.org/scipy2010/slides/james_bergstra_theano.pdf


THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

▸ Mathematical symbolic expression compiler 

▸ Written in Python - better than C++ for rapid prototyping 

▸ Attempts to conform to NumPy syntax and semantics 

▸ With transparent support for GPUs

http://www.deeplearning.net/software/theano/


THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

import numpy as np 
import theano 
import theano.tensor as T 

# Define the symbolic expression 
x = T.scalar('x') 
y = T.scalar('y') 
z = x + y 

# Define the function inputs and outputs. Calling this 
# function causes C source code to be generated and compiled, 
# either for the CPU or GPU, depending on your configuration. 
f = theano.function(inputs=[x, y], outputs=z) 

# Then call the function, which returns a numpy array. 
results = f(1, 10) 

# Now run it from the command line. 
$ THEANO_FLAGS='device=cpu' python theano_example_1.py  
11.0 

http://www.deeplearning.net/software/theano/


THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

from collections import OrderedDict 

from sklearn.datasets import make_regression 
import numpy as np 
import theano 
import theano.tensor as T 

# Define the symblic expression, including the model parameters. 
w = theano.shared(0., name='w') 
b = theano.shared(0., name='b') 
x = T.vector('x') 
y = T.scalar('y') 
output = w*x + b 

# Define the scalar cost and state what gradients to compute. 
cost = ((output - y)**2).mean() 
gw, gb = T.grad(cost, [w, b]) 

# Define the updates. 
updates = OrderedDict() 
updates[w] = w-0.1*gw 
updates[b] = b-0.1*gb 

# Define the function inputs and outputs. 
f = theano.function(inputs=[x, y], outputs=output, updates=updates) 

LINEAR 
REGRESSION IN 

TWO SLIDES.

http://www.deeplearning.net/software/theano/


THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

# Now make a regression dataset with a known coefficient and bias. 
bias=66. 
n_samples=20 
X, y, coef = make_regression( 
    n_samples=n_samples, n_features=1, coef=True, bias=bias) 

# Then iterate over the training examples. The updates are automatically applied. 
for i in range(len(X)): 
    results = f(X[i], y[i]) 

print('True coefficient {:.03f} bias {:.03f}'.format(coef, bias)) 
print('Estimated coefficient {:.03f} bias {:.03f}'.format(w.get_value(), b.get_value())) 

# Now run it from the command line. 
$ THEANO_FLAGS='device=cpu,floatX=float64' python theano_example_2.py  
True coefficient 82.199 bias 66.000 
Estimated coefficient 83.316 bias 66.895 

LINEAR 
REGRESSION IN 

TWO SLIDES.

http://www.deeplearning.net/software/theano/


THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

import numpy as np 

M = np.random.normal(size=(10, 5)) 
result = M.copy() 
k = 10 
for i in range(k): 
    result = result * M 

import theano 
import theano.tensor as T 

k = T.iscalar('k') 
A = T.vector('A') 

# Symbolic description of the result 
result, updates = theano.scan( 
    fn=lambda prior_result, A: prior_result * A, 
    outputs_info=T.ones_like(A), 
    non_sequences=A, 
    n_steps=k) 

# We only care about A**k, but scan has provided us with A**1 through 
# A**k. Discard the values that we don't care about. Scan is smart enough 
# to notice this and not waste memory saving them. 
final_result = result[-1] 

# Compiled function that returns A**k 
power = theano.function(inputs=[A,k], outputs=final_result, updates=updates) 

results = power(range(10), 2) 

COMPUTING ELEMENT-WISE POWERS 
OF A MATRIX IN NUMPY

COMPUTING 
THE SAME IN 

THEANO

http://www.deeplearning.net/software/theano/


THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

SOME LIMITATIONS OF THEANO

‣ Poor expressivity 

‣ Example: theano.scan 

‣ Corollary: Not a true automatic differentiation framework 

‣ Because of compilation step (either to CPU or GPU), there can 
be a substantial delay between program invocation and 
execution. The delays for recurrent networks could be 
substantial. 

‣ No longer being actively developed, because of success of 
other frameworks

http://www.deeplearning.net/software/theano/


TORCH7 - 2012

▸ Torch7 was a continuation of the earlier versions of Torch, 
with nice, modular design. 

▸ GPU support - easy to move tensors to and from GPU 

▸ Define-then-run, but not symbolic 

▸ Written in Lua (!) 

▸ Rationale for Lua was ease of extensibility (in C++) 

▸ Super fast



TORCH7 - 2012

▸ torch - numerical library 

▸ nn - neural networks 

▸ optim - optimization  

▸ image - image loading, preprocessing, and manipulation 

▸ paths - filesystem-related functions

TOP-LEVEL PACKAGES



TORCH7 - 2012

require 'nn'; 

model = nn.Sequential() 

# First convolution. 
model:add(nn.SpatialConvolutionMM(1, 32, 5, 5)) 
model:add(nn.Tanh()) 
model:add(nn.SpatialMaxPooling(2, 2, 2, 2)) 

# Second convolution. 
model:add(nn.SpatialConvolutionMM(32, 64, 5, 5)) 
model:add(nn.Tanh()) 
model:add(nn.SpatialMaxPooling(2, 2, 2, 2)) 

# Fully-connected layers. 
model:add(nn.Reshape(64 * 4 * 4)) 
model:add(nn.Linear(64 * 4 * 4, 200)) 
model:add(nn.Tanh()) 
model:add(nn.Linear(200, 10)) 

THE NOTION OF 
CONTAINERS IN E.G. KERAS 

ORIGINATED IN TORCH. 

A CONTAINER IS AN 
INSTANCE OF THE MODULE 
CLASS, AND INSTANCES OF 

MODULE ARE ADDED TO 
THE CONTAINER.  

A CONTAINER CAN BE 
ADDED TO ANOTHER 

CONTAINER.



TORCHNET - 2015

require 'nn' 
require 'torchnet' 
require 'cunn' 

local net = nn.Sequential():add(nn.Linear(784,10)) 
local criterion = nn.CrossEntropyCriterion() 

-- Put network and loss function on GPU. 
net = net:cuda() 
criterion = criterion:cuda() 

-- CudaTensor is put on GPU by default. 
local input = torch.CudaTensor() 
local target = torch.CudaTensor() 

local engine = torchnet.SGDEngine() 

--[[ 
Each time the engine receives a new sample from the dataset iterator, 
resize the input and target tensors to match the sizes in the minibatch, 
and copy from the CPU to the GPU. 
]]-- 
engine.hooks.onSample = function(state) 
  input:resize( 
    state.sample.input:size() 
  ):copy(state.sample.input) 

  target:resize( 
    state.sample.target:size() 
  ):copy(state.sample.target) 

  state.sample.input = input 
  state.sample.target = target 
end 

CAN MOVE TENSORS TO 
AND FROM GPU AT WILL.

ENGINE IN TORCHNET 
SIMILAR TO TRAINER IN 

2002 TORCH.

HOOKS ALLOW USER TO 
RUN CODE AT CERTAIN 
POINTS IN EXECUTION. 



TORCH7 - 2012

SOME LIMITATIONS OF TORCH7

‣ Define-then-run 

‣ Lua (particularly for NLP tasks, but even for vision)



PYLEARN2 - 2013

!obj:pylearn2.train.Train { 
  "dataset": !obj:pylearn2.datasets.dense_design_matrix.DenseDesignMatrix &dataset { 
    "X" : !obj:numpy.random.normal { 'size':[5,3] }, 
  }, 
  "model": !obj:pylearn2.models.autoencoder.DenoisingAutoencoder { 
    "nvis" : 3, 
    "nhid" : 4, 
    "irange" : 0.05, 
    "corruptor": !obj:pylearn2.corruption.BinomialCorruptor { 
      "corruption_level": 0.5, 
    }, 
    "act_enc": "tanh", 
    "act_dec": null,    # Linear activation on the decoder side. 
  }, 
  "algorithm": !obj:pylearn2.training_algorithms.sgd.SGD { 
    "learning_rate" : 1e-3, 
    "batch_size" : 5, 
    "monitoring_dataset" : *dataset, 
    "cost" : !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError {}, 
    "termination_criterion" : !obj:pylearn2.termination_criteria.EpochCounter { 
      "max_epochs": 1, 
    }, 
  }, 
  "save_path": "./garbage.pkl" 
} 

PYLEARN2 WAS A WRAPPER FOR THEANO. IT WAS WRITTEN AT THE 
UNIVERSITY OF MONTREAL IN THE SAME LAB THAT CREATED THEANO.

A YAML FILE 
DECLARED THE 
ELEMENTS OF 
THE SYSTEM. 

MUCH LIKE THE 
ORIGINAL TORCH, IT 

HAD NOTIONS OF 
DATASET, MODEL, AND 

OPTIMIZER 
(ALGORITHM). 



KERAS - 2015

import keras 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Activation 
from keras.optimizers import SGD 

# Generate dummy data 
import numpy as np 
x_train = np.random.random((1000, 20)) 
y_train = keras.utils.to_categorical( 
    np.random.randint(10, size=(1000, 1)), num_classes=10) 
x_test = np.random.random((100, 20)) 
y_test = keras.utils.to_categorical( 
    np.random.randint(10, size=(100, 1)), num_classes=10) 

model = Sequential() 
# Dense(64) is a fully-connected layer with 64 hidden units. In the 
# first layer, you must specify the expected input data shape: here, 
# 20-dimensional vectors. 
model.add(Dense(64, activation='relu', input_dim=20)) 
model.add(Dropout(0.5)) 
model.add(Dense(64, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(10, activation='softmax')) 

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) 
model.compile( 
    loss='categorical_crossentropy', optimizer=sgd, 
metrics=['accuracy']) 

model.fit(x_train, y_train, epochs=20, batch_size=128) 
score = model.evaluate(x_test, y_test, batch_size=128) 

KERAS WAS ORIGINALLY A 
WRAPPER FOR THEANO.

IT EMULATED TORCH7. 
NOTICE SIMILARITIES SUCH 

AS SEQUENTIAL AND 
MODEL.ADD.



KERAS - 2015

from keras.layers import Input, Dense 
from keras.models import Model 

# This returns a tensor. 
inputs = Input(shape=(784,)) 

# A layer instance is callable on a tensor, and returns a tensor. 
x = Dense(64, activation='relu')(inputs) 
x = Dense(64, activation='relu')(x) 
predictions = Dense(10, activation='softmax')(x) 

# This creates a model that includes the Input layer and three Dense 
# layers. 
model = Model(inputs=inputs, outputs=predictions) 
model.compile( 
    optimizer='rmsprop', 
    loss='categorical_crossentropy', 
    metrics=['accuracy']) 
model.fit(data, labels) 

The Keras functional API does away with containers and connects layers to their 
successors in the computational graph by passing the predecessor as an argument. 

This replaces model.add with Python’s __call__ method — effectively associating 
predecessors and successors with a pseudo-closure. 

How might this be more flexible than a sequential container?

IN THE CONTAINER API, THIS WOULD BE 
MODEL.ADD.


