
DEEP LEARNING SOFTWARE
CSCI 5922 - NEURAL NETWORKS AND
DEEP LEARNING

MIDTERM

HISTORY OF FRAMEWORKS

Framework Year
Torch 2002

Theano 2010
Torch7 2011
Theano 2012
Pylearn2 2013

Keras 2015
Torchnet 2015

Framework Year
Autograd 2015
Chainer 2015
MXNet 2015

TensorFlow 2016
Theano 2016
DyNet 2017

PyTorch 2017
Ignite 2018

TensorFlow 2019

FIRST GENERATION
SECOND GENERATION

First full frameworks to support CUDA/GPUs.

First frameworks to support
define-by-run automatic
differentiation.

Wrappers

TORCH - 2002 - HTTP://TORCH.CH

While this version of Torch pre-dates deep learning, it is the
prototype for contemporary machine learning frameworks.
Most contemporary deep learning frameworks, consciously or
not, mimic Torch.

Torch is written in C++ and supports machine learning
algorithms like multi-layer neural networks, support vector
machines, Gaussian mixture models, and hidden Markov
models.

It was made available under the BSD license (free to copy and
commercial use/proprietary modifications are allowed as long
as attribution is preserved).

http://torch.ch

TORCH - 2002 - HTTP://TORCH.CH

The core API is inspired by object-oriented programming
and design patterns — specifically, by the notions of
modularity and separation of interface and
implementation. The API contains useful abstractions like:

‣DataSet

‣Machine

‣Measurer

‣ Trainer

http://torch.ch

TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for loading data

‣ Relieves engineer of need to repeatedly write code to read training data and labels

‣ Provides an abstraction layer that allows data to be read from any source

‣ Design pattern: Proxy

DATASET CLASS

http://torch.ch

TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for learning mapping from inputs to targets

‣ Several learning algorithms supported

‣ Multi-layer neural network

‣ Support vector machine

‣ “Distribution”

‣ Gaussian mixture model

‣ Hidden Markov model

‣ Design pattern: Adapter

MACHINE CLASS

http://torch.ch

TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for measuring the output of the machine

‣ Loss: mean squared error, log loss

‣ Metric: accuracy, F1, etc.

‣ Design pattern: ?

MEASURER CLASS

http://torch.ch

TORCH - 2002 - HTTP://TORCH.CH

‣ Responsible for optimizing the Machine

‣ Stochastic gradient trainer (multi-layer neural network)

‣ Quadratic constrained trainer (support vector machine)

‣ Also responsible for ensembling

‣ To train with/as an ensemble, an ordinary trainer is a delegate of a bagging or
boosting trainer, e.g. (pseudocode):

‣ BaggingTrainer(QuadraticConstrainedTrainer(…))

‣ BoostingTrainer(StochasticGradientTrainer(…))

‣ Design pattern: Controller

TRAINER CLASS

http://torch.ch

ENTER GRAPHICS PROCESSING UNITS

▸ Large-scale deep unsupervised learning using graphics
processors, Raina, Madhavan, and Ng, 2009 [PDF]

▸ Deep Big Simple Neural Nets Excel on Handwritten Digit
Recognition, Ciresan, Meier, Gambardella, and
Schmidhuber, 2010 [arXiv]

▸ ImageNet Classification with Deep Convolutional Neural
Networks, Krizhevsky, Sutskever, and Hinton, 2012

https://dl.acm.org/citation.cfm?id=1553486
https://dl.acm.org/citation.cfm?id=1553486
http://robotics.stanford.edu/~ang/papers/icml09-LargeScaleUnsupervisedDeepLearningGPU.pdf
https://www.mitpressjournals.org/doi/10.1162/NECO_a_00052
https://www.mitpressjournals.org/doi/10.1162/NECO_a_00052
https://arxiv.org/abs/1003.0358
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

ENTER GRAPHICS PROCESSING UNITS

Bergstra et al, Scipy Conference, 2010

The computational
workhorse of multi-layer
neural networks is matrix
multiplication, which has
complexity O(n^3).

Matrix multiplication can
be seen a set of dot
products between rows
of the left operand and
the columns of the right
operand matrix. Naively,
each dot product can be
dispatched to a different
core on a GPU.

With cores numbering in
the thousands, GPUs can
run many operations on
matrices faster than
CPUs can, even with
slower clock cycles.

https://conference.scipy.org/scipy2010/slides/james_bergstra_theano.pdf

THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

▸ Mathematical symbolic expression compiler

▸ Written in Python - better than C++ for rapid prototyping

▸ Attempts to conform to NumPy syntax and semantics

▸ With transparent support for GPUs

http://www.deeplearning.net/software/theano/

THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

import numpy as np
import theano
import theano.tensor as T

Define the symbolic expression
x = T.scalar('x')
y = T.scalar('y')
z = x + y

Define the function inputs and outputs. Calling this
function causes C source code to be generated and compiled,
either for the CPU or GPU, depending on your configuration.
f = theano.function(inputs=[x, y], outputs=z)

Then call the function, which returns a numpy array.
results = f(1, 10)

Now run it from the command line.
$ THEANO_FLAGS='device=cpu' python theano_example_1.py
11.0

http://www.deeplearning.net/software/theano/

THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

from collections import OrderedDict

from sklearn.datasets import make_regression
import numpy as np
import theano
import theano.tensor as T

Define the symblic expression, including the model parameters.
w = theano.shared(0., name='w')
b = theano.shared(0., name='b')
x = T.vector('x')
y = T.scalar('y')
output = w*x + b

Define the scalar cost and state what gradients to compute.
cost = ((output - y)**2).mean()
gw, gb = T.grad(cost, [w, b])

Define the updates.
updates = OrderedDict()
updates[w] = w-0.1*gw
updates[b] = b-0.1*gb

Define the function inputs and outputs.
f = theano.function(inputs=[x, y], outputs=output, updates=updates)

LINEAR
REGRESSION IN

TWO SLIDES.

http://www.deeplearning.net/software/theano/

THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

Now make a regression dataset with a known coefficient and bias.
bias=66.
n_samples=20
X, y, coef = make_regression(
 n_samples=n_samples, n_features=1, coef=True, bias=bias)

Then iterate over the training examples. The updates are automatically applied.
for i in range(len(X)):
 results = f(X[i], y[i])

print('True coefficient {:.03f} bias {:.03f}'.format(coef, bias))
print('Estimated coefficient {:.03f} bias {:.03f}'.format(w.get_value(), b.get_value()))

Now run it from the command line.
$ THEANO_FLAGS='device=cpu,floatX=float64' python theano_example_2.py
True coefficient 82.199 bias 66.000
Estimated coefficient 83.316 bias 66.895

LINEAR
REGRESSION IN

TWO SLIDES.

http://www.deeplearning.net/software/theano/

THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

import numpy as np

M = np.random.normal(size=(10, 5))
result = M.copy()
k = 10
for i in range(k):
 result = result * M

import theano
import theano.tensor as T

k = T.iscalar('k')
A = T.vector('A')

Symbolic description of the result
result, updates = theano.scan(
 fn=lambda prior_result, A: prior_result * A,
 outputs_info=T.ones_like(A),
 non_sequences=A,
 n_steps=k)

We only care about A**k, but scan has provided us with A**1 through
A**k. Discard the values that we don't care about. Scan is smart enough
to notice this and not waste memory saving them.
final_result = result[-1]

Compiled function that returns A**k
power = theano.function(inputs=[A,k], outputs=final_result, updates=updates)

results = power(range(10), 2)

COMPUTING ELEMENT-WISE POWERS
OF A MATRIX IN NUMPY

COMPUTING
THE SAME IN

THEANO

http://www.deeplearning.net/software/theano/

THEANO - 2011 - HTTP://WWW.DEEPLEARNING.NET/SOFTWARE/THEANO/

SOME LIMITATIONS OF THEANO

‣ Poor expressivity

‣ Example: theano.scan

‣ Corollary: Not a true automatic differentiation framework

‣ Because of compilation step (either to CPU or GPU), there can
be a substantial delay between program invocation and
execution. The delays for recurrent networks could be
substantial.

‣ No longer being actively developed, because of success of
other frameworks

http://www.deeplearning.net/software/theano/

TORCH7 - 2012

▸ Torch7 was a continuation of the earlier versions of Torch,
with nice, modular design.

▸ GPU support - easy to move tensors to and from GPU

▸ Define-then-run, but not symbolic

▸ Written in Lua (!)

▸ Rationale for Lua was ease of extensibility (in C++)

▸ Super fast

TORCH7 - 2012

▸ torch - numerical library

▸ nn - neural networks

▸ optim - optimization

▸ image - image loading, preprocessing, and manipulation

▸ paths - filesystem-related functions

TOP-LEVEL PACKAGES

TORCH7 - 2012

require 'nn';

model = nn.Sequential()

First convolution.
model:add(nn.SpatialConvolutionMM(1, 32, 5, 5))
model:add(nn.Tanh())
model:add(nn.SpatialMaxPooling(2, 2, 2, 2))

Second convolution.
model:add(nn.SpatialConvolutionMM(32, 64, 5, 5))
model:add(nn.Tanh())
model:add(nn.SpatialMaxPooling(2, 2, 2, 2))

Fully-connected layers.
model:add(nn.Reshape(64 * 4 * 4))
model:add(nn.Linear(64 * 4 * 4, 200))
model:add(nn.Tanh())
model:add(nn.Linear(200, 10))

THE NOTION OF
CONTAINERS IN E.G. KERAS

ORIGINATED IN TORCH.

A CONTAINER IS AN
INSTANCE OF THE MODULE
CLASS, AND INSTANCES OF

MODULE ARE ADDED TO
THE CONTAINER.

A CONTAINER CAN BE
ADDED TO ANOTHER

CONTAINER.

TORCHNET - 2015

require 'nn'
require 'torchnet'
require 'cunn'

local net = nn.Sequential():add(nn.Linear(784,10))
local criterion = nn.CrossEntropyCriterion()

-- Put network and loss function on GPU.
net = net:cuda()
criterion = criterion:cuda()

-- CudaTensor is put on GPU by default.
local input = torch.CudaTensor()
local target = torch.CudaTensor()

local engine = torchnet.SGDEngine()

--[[
Each time the engine receives a new sample from the dataset iterator,
resize the input and target tensors to match the sizes in the minibatch,
and copy from the CPU to the GPU.
]]--
engine.hooks.onSample = function(state)
 input:resize(
 state.sample.input:size()
):copy(state.sample.input)

 target:resize(
 state.sample.target:size()
):copy(state.sample.target)

 state.sample.input = input
 state.sample.target = target
end

CAN MOVE TENSORS TO
AND FROM GPU AT WILL.

ENGINE IN TORCHNET
SIMILAR TO TRAINER IN

2002 TORCH.

HOOKS ALLOW USER TO
RUN CODE AT CERTAIN
POINTS IN EXECUTION.

TORCH7 - 2012

SOME LIMITATIONS OF TORCH7

‣ Define-then-run

‣ Lua (particularly for NLP tasks, but even for vision)

PYLEARN2 - 2013

!obj:pylearn2.train.Train {
 "dataset": !obj:pylearn2.datasets.dense_design_matrix.DenseDesignMatrix &dataset {
 "X" : !obj:numpy.random.normal { 'size':[5,3] },
 },
 "model": !obj:pylearn2.models.autoencoder.DenoisingAutoencoder {
 "nvis" : 3,
 "nhid" : 4,
 "irange" : 0.05,
 "corruptor": !obj:pylearn2.corruption.BinomialCorruptor {
 "corruption_level": 0.5,
 },
 "act_enc": "tanh",
 "act_dec": null, # Linear activation on the decoder side.
 },
 "algorithm": !obj:pylearn2.training_algorithms.sgd.SGD {
 "learning_rate" : 1e-3,
 "batch_size" : 5,
 "monitoring_dataset" : *dataset,
 "cost" : !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError {},
 "termination_criterion" : !obj:pylearn2.termination_criteria.EpochCounter {
 "max_epochs": 1,
 },
 },
 "save_path": "./garbage.pkl"
}

PYLEARN2 WAS A WRAPPER FOR THEANO. IT WAS WRITTEN AT THE
UNIVERSITY OF MONTREAL IN THE SAME LAB THAT CREATED THEANO.

A YAML FILE
DECLARED THE
ELEMENTS OF
THE SYSTEM.

MUCH LIKE THE
ORIGINAL TORCH, IT

HAD NOTIONS OF
DATASET, MODEL, AND

OPTIMIZER
(ALGORITHM).

KERAS - 2015

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD

Generate dummy data
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(
 np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(
 np.random.randint(10, size=(100, 1)), num_classes=10)

model = Sequential()
Dense(64) is a fully-connected layer with 64 hidden units. In the
first layer, you must specify the expected input data shape: here,
20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(
 loss='categorical_crossentropy', optimizer=sgd,
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=20, batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

KERAS WAS ORIGINALLY A
WRAPPER FOR THEANO.

IT EMULATED TORCH7.
NOTICE SIMILARITIES SUCH

AS SEQUENTIAL AND
MODEL.ADD.

KERAS - 2015

from keras.layers import Input, Dense
from keras.models import Model

This returns a tensor.
inputs = Input(shape=(784,))

A layer instance is callable on a tensor, and returns a tensor.
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

This creates a model that includes the Input layer and three Dense
layers.
model = Model(inputs=inputs, outputs=predictions)
model.compile(
 optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['accuracy'])
model.fit(data, labels)

The Keras functional API does away with containers and connects layers to their
successors in the computational graph by passing the predecessor as an argument.

This replaces model.add with Python’s __call__ method — effectively associating
predecessors and successors with a pseudo-closure.

How might this be more flexible than a sequential container?

IN THE CONTAINER API, THIS WOULD BE
MODEL.ADD.

