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HISTORY OF FRAMEWORKS

Framework Year
Torch 2002

Theano 2010
Torch7 2011
Theano 2012
Pylearn2 2013

Keras 2015
Torchnet 2015

Framework Year
Autograd 2015
Chainer 2015
MXNet 2015

TensorFlow 2016
Theano 2016
DyNet 2017

PyTorch 2017
Ignite 2018
JAX 2018

TensorFlow 2019

FIRST GENERATION
SECOND GENERATION

First full frameworks to support CUDA/GPUs. 

First frameworks to support 
pure automatic differentiation.

Wrappers



2015 - DEEP LEARNING REDISCOVERS PURE AUTOMATIC DIFFERENTIATION

ALL OF THE FRAMEWORKS DISCUSSED SO FAR REQUIRE THE 
PROGRAMMER TO DEFINE THE COMPUTATIONAL GRAPH PRIOR TO 

RUNNING IT AND THE GRAPH IS STATIC (IN CHAINER NOMENCLATURE, 
THESE FRAMEWORKS ARE DEFINE-THEN-RUN).

THE STATIC GRAPH, DEFINE-THEN-RUN FRAMEWORKS LIMIT 
THE PROGRAMMER’S ABILITY TO EXPRESS COMPUTATIONS 

USING THE PROGRAMMING LANGUAGES NATIVE CONSTRUCTS, 
SUCH AS LOOPS AND CONDITIONALS.

STARTING IN 2015, MANY NEW FRAMEWORKS STARTED TO 
USE DYNAMIC GRAPHS (IN CHAINER NOMENCLATURE, 

THESE ARE DEFINE-BY-RUN).

THIS PARADIGM IS ESSENTIALLY THE SAME AS AUTOMATIC 
DIFFERENTIATION BY METHOD OVERLOADING, WHICH WE 

SAW IN AUTOMATIC DIFFERENTIATION IN MACHINE 
LEARNING: A SURVEY AND WHICH WAS NOT INVENTED BY 

THE DEEP LEARNING COMMUNITY

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767


AUTOGRAD - 2015

import autograd.numpy as np 
from autograd import grad 
from autograd.test_util import check_grads 

def sigmoid(x): 
    return 0.5*(np.tanh(x) + 1) 

def logistic_predictions(weights, inputs): 
    # Outputs probability of a label being true according 
    # to logistic model. 
    return sigmoid(np.dot(inputs, weights)) 

def training_loss(weights, inputs, targets): 
    # Training loss is the negative log-likelihood of the 
    # training labels. 
    preds = logistic_predictions(weights, inputs) 
    label_probabilities = preds * targets + \ 
        (1 - preds) * (1 - targets) 
    return -np.sum(np.log(label_probabilities))

LOGISTIC REGRESSION IN TWO SLIDESAUTOGRAD’S 
NUMPY WRAPS 

NUMPY

LIKE THEANO, A FUNCTION FOR 
COMPUTING GRADIENT OF 
LOSS WITH RESPECT TO 

PARAMETERS

STANDARD 
LOGISTIC 

REGRESSION 
STUFF

THE LOSS, 
WHICH GETS 
WRAPPED BY 

AUTOGRAD



AUTOGRAD - 2015

# Build a toy dataset and weights. 
inputs = np.array([[0.52, 1.12,  0.77], 
                   [0.88, -1.08, 0.15], 
                   [0.52, 0.06, -1.30], 
                   [0.74, -2.49, 1.39]]) 
targets = np.array([True, True, False, True]) 
weights = np.array([0.0, 0.0, 0.0]) 

# Build a function that returns gradients of training loss 
# with respect to parameters. 
training_gradient_fun = grad(training_loss) 

# Check the gradients numerically, just to be safe. 
check_grads(training_loss, modes=[‘rev'])( 
    weights, inputs, targets) 

# Optimize weights using gradient descent. 
print("Initial loss:", training_loss(weights, inputs, targets)) 
for i in range(10): 
    weights -= training_gradient_fun( 
        weights, inputs, targets) * 0.01 
print("Trained loss:", training_loss(weights, inputs, targets)) 

LOGISTIC REGRESSION IN TWO SLIDES
INITIALIZATION 

OF DATA, 
WEIGHTS

`GRAD` RETURNS A 
FUNCTION THAT WRAPS 

ALL CONTINUOUS, 
DIFFERENTIABLE 

TRANSFORMATIONS

MODES CAN BE 
‘FWD’ OR ‘REV’

HOW DOES GRADIENT 
FUNCTION KNOW THE 
PARAMETERS OF THE 

MODEL? 



CHAINER - 2015

▸ Chainer 

▸ First deep learning framework with both 

▸ Pure AD framework, dynamic graph, define-by-run 

▸ GPU support 

▸ CuPy 

▸ Low-level numerical library used by Chainer 

▸ Near drop-in replacement for NumPy 

▸ Just for GPUs



TENSORFLOW - 2016

▸ Lots of support for production deployment (e.g. TensorFlow Serving, 
TensorFlow.js) 

▸ Fairly straightforward to build preprocessing into the computational graph 

▸ This is super helpful for reproducibility and production use cases. Why? 

▸ Static computational graph 

▸ Allows graph to be optimized prior to execution (in principle) 

▸ In practice, see XLA (Accelerated Linear Algebra), which is just-in-time. 

▸ When flow control is required, developer needs to become fluent in new API 
(e.g. tf.cond, tf.while_loop) 

▸ When print statements are required, the developer needs to use an API 

▸ x = tf.Print(x, data=[x.size()], message=‘Length of vector’) 

▸ Wanton use of Python context managers (e.g. with tf.variable_scope(…))

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/js
https://www.tensorflow.org/xla


DYNET - 2017

STATIC GRAPHS (THEANO, TENSORFLOW) 
1. DEFINE GRAPH 
2. FOR EACH DATA POINT 

I. ADD DATA 
II. FORWARD 
III. BACKWARD 
IV. UPDATE

DYNAMIC GRAPHS+EAGER EVALUATION 
(CHAINER, PYTORCH) 

1. FOR EACH DATA POINT 
I. DEFINE/ADD DATA/FORWARD 
II. BACKWARD 
III. UPDATE

DYNAMIC GRAPHS+LAZY EVALUATION 
(DYNET) 

1. FOR EACH DATA POINT 
I. DEFINE/ADD DATA 
II. FORWARD 
III. BACKWARD 
IV. UPDATE

Simple and Efficient Learning with 
Automatic Operation Batching, Neubig

On-the-fly Operation Batching in Dynamic 
Computation Graphs, Neubig, Goldberg, and 
Dyer, 2017

GRAPH CAN BE IMMEDIATELY OPTIMIZED 
WHEN DEFINED 
EASY TO SERIALIZE 
HARD TO IMPLEMENT VARYING STRUCTURE 
ERRORS ARE DEFERRED

GRAPH CANNOT BE IMMEDIATELY OPTIMIZED 
WHEN DEFINED 
HARDER TO SERIALIZE 
EASY TO IMPLEMENT VARYING STRUCTURE 
ERRORS ARE IMMEDIATE

GRAPH CANNOT BE IMMEDIATELY OPTIMIZED 
WHEN DEFINED 
HARDER TO SERIALIZE 
EASY TO IMPLEMENT VARYING STRUCTURE 
ERRORS ARE DEFERRED

http://www.phontron.com/slides/neubig17howtocode.pdf
http://www.phontron.com/slides/neubig17howtocode.pdf
https://papers.nips.cc/paper/6986-on-the-fly-operation-batching-in-dynamic-computation-graphs
https://papers.nips.cc/paper/6986-on-the-fly-operation-batching-in-dynamic-computation-graphs


PYTORCH - 2017

import torch 

batch_size, input_dim, hidden_dim, output_dim = 64, 1000, 100, 10 

x = torch.randn(batch_size, input_dim) 
y = torch.randn(batch_size, output_dim) 

model = torch.nn.Sequential( 
    torch.nn.Linear(input_dim, hidden_dim), 
    torch.nn.ReLU(), 
    torch.nn.Linear(hidden_dim, output_dim)) 

loss_fn = torch.nn.MSELoss(reduction='sum') 

learning_rate = 1e-4 

for t in range(500): 
    y_pred = model(x) 
    loss = loss_fn(y_pred, y) 
    print(t, loss.item()) 
    model.zero_grad() 
    loss.backward() 
    with torch.no_grad(): 
        for param in model.parameters(): 
            param -= learning_rate * param.grad 

LINEAR REGRESSION IN ONE SLIDE

CONTAINERS, SUCH 
AS SEQUENTIAL, 
INHERITED FROM 

TORCH7.

PURE AD PYTHON 
IMPLEMENTATION OF 
TORCH7, INSPIRED 
BY AUTOGRAD AND 

CHAINER.

CLEAR GRADIENTS FROM 
PREVIOUS ITERATION (ELSE 

THEY ARE ADDED).
NEW GRADIENTS 
COMPUTED HERE.



PYTORCH - 2017

import torch 
import torch.nn as nn 
import torch.nn.functional as F 

class Network(nn.Module): 
    def __init__(self, input_dim, hidden_dim, output_dim): 
        # When defining your own subclass of Module, always call the 
        # superclass' initializer before assigning to `self`. Doing 
        # so ensures that parameter updates occur for all properties 
        # of instances of this subclass. 
        super().__init__() 

        self.linear1 = nn.Linear(input_dim, hidden_dim) 
        self.linear2 = nn.Linear(hidden_dim, output_dim) 

    def forward(self, input): 
        output = self.linear1(input) 
        output = F.relu(output) 
        output = self.linear2(output) 
        return output 

NN.MODULE IS THE 
PARENT OF PYTORCH’S 

CONTAINERS

DEFINING A SUBCLASS OF 
NN.MODULE CREATES YOUR 

OWN CONTAINER
STATELESS, FUNCTIONAL API, INSPIRED BY CHAINER. 

OBECT-ORIENTED API IS A FRONT-END OF THE 
FUNCTIONAL API.

ONLY NEED TO DEFINE 
FORWARD. NN.MODULE 

HANDLES THE 
BACKWARD PASS FOR 

YOU.

LOOPS, IFS, 
RECURSION — YOU 

NAME IT — CAN 
HAPPEN IN FORWARD.



PYTORCH - 2017

A SIMPLE UNET IN TWO SLIDES.

WE WON’T REPRODUCE ITS NAMESAKE EXACTLY.



PYTORCH - 2017

import torch 
import torch.nn as nn 
import torch.nn.functional as F 

class UNetModule(nn.Module): 
    def __init__(self, in_channels, out_channels, mode=None): 
        super().__init__() 
        assert mode in ['encoder', 'decoder'] 
        self.mode = mode 

        if self.mode is 'encoder': 
            self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 
                                   stride=2, padding=1, bias=False) 
        else: 
            self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 
                                   stride=1, padding=1, bias=False) 
        self.act1 = nn.ReLU(out_channels) 

        if self.mode == 'decoder': 
            self.transposed = nn.ConvTranspose2d( 
                out_channels, out_channels, 3, 
                stride=2, padding=1, output_padding=1, bias=False) 

    def forward(self, input, lateral_input=None): 
        if self.mode == 'decoder' and lateral_input is not None: 
            input = torch.cat((input, lateral_input), dim=1) 
        output = self.conv1(input) 
        output = self.act1(output) 
        if self.mode == 'decoder': 
            output = self.transposed(output) 
        return output 

A SIMPLE UNET IN TWO SLIDES.



PYTORCH - 2017

class UNet(nn.Module): 
    def __init__(self, n_classes, n_input_channels=3): 
        super().__init__() 

        self.n_classes = n_classes 

        self.encoder1 = UNetModule(n_input_channels, 16, mode='encoder') 
        self.encoder2 = UNetModule(16, 16, mode='encoder') 
        self.encoder3 = UNetModule(16, 16, mode='encoder') 
        self.encoder4 = UNetModule(16, 16, mode='encoder') 

        self.decoder4 = UNetModule(16, 16, mode='decoder') 
        self.decoder3 = UNetModule(32, 16, mode='decoder') 
        self.decoder2 = UNetModule(32, 16, mode='decoder') 
        self.decoder1 = UNetModule(32, 16, mode='decoder') 

        self.classifier = nn.Conv2d(16, n_classes, 1, padding=0, bias=False) 

    def forward(self, input): 
        encoder1_output = self.encoder1(input) 
        encoder2_output = self.encoder2(encoder1_output) 
        encoder3_output = self.encoder3(encoder2_output) 
        encoder4_output = self.encoder4(encoder3_output) 

        decoder4_output = self.decoder4(encoder4_output) 
        decoder3_output = self.decoder3(decoder4_output, encoder3_output) 
        decoder2_output = self.decoder2(decoder3_output, encoder2_output) 
        decoder1_output = self.decoder1(decoder2_output, encoder1_output) 

        output = self.classifier(decoder1_output) 

        return output 

A SIMPLE UNET IN TWO SLIDES.



PYTORCH - 2017 - GRADIENT HACKING

#!/usr/bin/env python 

# coding: utf-8 

from functools import partial 

import torch 
import torch.nn as nn 

def print_tensor_grad(grad, name=None, value=None): 
    print(name, 'value', value, 'grad', grad) 

def print_module_grad(module, grad_input, grad_out, name=None): 
    print(name, grad_input) 

RECALL THAT WHEN A TENSOR TAKES MULTIPLE PATHS THROUGH A NETWORK (I.E. THERE’S A FORK IN THE 
ROAD, AND IT TAKES BOTH), THERE ARE — DURING THE BACKWARD PASS — MULTIPLE GRADIENTS, ONE 

FOR EACH PATH THE TENSOR TOOK. 

ALL FRAMEWORKS SUM THESE GRADIENTS BY DEFAULT. GETTING ACCESS TO THE PRE-SUMMED 
GRADIENTS CAN BE TRICKY. 

THE NEXT THREE SLIDES SHOW ONE WAY TO DO THIS. 

PYTORCH SUPPORTS HOOKS ON 
BOTH MODULES AND TENSORS. 

DEFINE FUNCTIONS TO PRINT THE 
GRADIENTS.



PYTORCH - 2017 - GRADIENT HACKING

class Network(nn.Module): 
    def __init__(self, n_in=2, n_out=2): 
        super().__init__() 
        self.layer1 = nn.Linear(n_in, n_out, bias=False) 
        self.layer2 = nn.Linear(n_out, n_out, bias=False) 
        self.layer3 = nn.Linear(n_out*2, 1, bias=False) 
        self.fun = nn.LeakyReLU(negative_slope=1.0)

NOW DEFINE THE NETWORK ITSELF. THE NETWORK MUST INHERIT FROM TORCH.NN.MODULE AND MUST CALL THE 
SUPERCLASS’S INITIALIZER BEFORE ASSIGNING TO SELF IN ITS OWN INITIALIZER. WHY? 

A MODULE IS A CONTAINER. FOR IT TO KNOW WHICH OF ITS PROPERTIES ARE PARAMETERS, THE SUPERCLASS 
OVERRIDES __SETATTR__, SO WHEN YOU WRITE SELF.LAYER1 = NN.LINEAR(…), IT CAN REGISTER SELF.LAYER1 

AS A CHILD MODULE AND AUTOMATICALLY UPDATE ITS PARAMETERS DURING TRAINING.

TO GET ACCESS TO THE PRE-SUMMED GRADIENTS, WE’LL ADD A LEAKY RELU 
WITH A NEGATIVE SLOPE OF 1 TO THE COMPUTATIONAL GRAPH, AND ADD A HOOK 

TO IT. WHY?



PYTORCH - 2017 - GRADIENT HACKING

class Network(nn.Module): 
    # Initializer skipped here. See previous slide. 

    def forward(self, input): 
        out1 = self.layer1(input) 
        out1.retain_grad() 

        path1 = self.fun(out1) 
        path1.retain_grad() 
        path2 = self.fun(out1) 
        path2.retain_grad() 

        out2 = self.layer2(path1) 
        input3 = torch.cat((path2, out2), dim=1) 
        out3 = self.layer3(input3) 

        out1.register_hook( 
            partial(print_tensor_grad, name='out1', value=out1)) 
        path1.register_hook( 
            partial(print_tensor_grad, name='path1', value=path1)) 
        path2.register_hook( 
            partial(print_tensor_grad, name='path2', value=path2)) 

        return { 
            'out1': out1, 
            'path1': path1, 
            'path2': path2, 
            'y': out3 
        }

THE RETAIN_GRAD METHOD INSTRUCTS 
PYTORCH’S TORCH.AUTOGRAD MODULE TO 
KEEP THE GRADIENTS FOR A NODE IN THE 

GRAPH AFTER THE REVERSE PASS. TO 
PRESERVE MEMORY, IT CLEARS UNNEEDED 

GRADIENTS.

WHAT IS GOING ON HERE? HOW DOES THIS ALLOW US TO GET ACCESS TO THE PRE-SUMMED GRADIENTS OF LAYER1?



PYTORCH - 2017 - GRADIENT HACKING

if __name__ == '__main__': 
    torch.manual_seed(17) 
    network = Network() 
    x = torch.ones(1, 2) 
    out = network(x) 
    out['y'].backward() 
    # Verify that the gradient of the output of the first layer is the 
    # same as the sum of the two paths taken by that output. 
    print('out1', out['out1'].grad) 
    print('path1', out['path1'].grad) 
    print('path2', out['path2'].grad) 
    assert torch.all( 
        out['out1'].grad == out['path1'].grad + out['path2'].grad) 

NOW RUN IT!



PYTORCH IGNITE - 2018

# Instantiate the optimizer, trainer, and evaluator. 
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum) 
trainer = create_supervised_trainer( 
        model, optimizer, F.nll_loss, device=device) 
evaluator = create_supervised_evaluator( 
        model, device=device, 
        metrics={'accuracy': Accuracy(), 'nll': Loss(F.nll_loss)}) 

desc = 'ITERATION - loss: {:.2f}' 
pbar = tqdm( 
    initial=0, leave=False, total=len(train_loader), desc=desc.format(0)) 

@trainer.on(Events.EPOCH_COMPLETED) 
def log_validation_results(engine): 
    # When the model has seen every example in the training set, run the 
    # validation set and report metrics. 
    evaluator.run(val_loader) 
    metrics = evaluator.state.metrics 
    avg_accuracy = metrics['accuracy'] 
    avg_nll = metrics['nll'] 
    tqdm.write( 
        'Val - Epoch: {}  Avg accuracy: {:.2f} Avg loss: {:.2f}'.format( 
            engine.state.epoch, avg_accuracy, avg_nll)) 
    pbar.n = pbar.last_print_n = 0 

# Now train the model. 
trainer.run(train_loader, max_epochs=epochs) 
pbar.close() 

EVENT HANDLERS CAN 
BE ADDED VIA A 

DECORATOR.

THESE KEEP THE 
SIMPLE CASE 

SIMPLE WITH A 
DEFAULT ENGINE.



PYTORCH IGNITE - 2018

def train_and_store_loss(engine, batch): 
    # The process function gets called on each iteration. 
    inputs, targets = batch 
    optimizer.zero_grad() 
    outputs = model(inputs) 
    loss = loss_fn(outputs, targets) 
    loss.backward() 
    optimizer.step() 
    return loss.item() 

engine = Engine(train_and_store_loss) 

@engine.on(Events.COMPLETED) 
def cleanup(engine): 
    print('Done training on epoch {:04d}'.format(engine.state.epoch)) 

# Can also add handlers via a method. 
engine.add_event_handler(Events.COMPLETED, cleanup) 

engine.run(data_loader) 

DEFINING YOUR OWN PROCESS FUNCTION.



PYTORCH IGNITE - 2018

‣ Events.STARTED 

‣ Events.COMPLETED 

‣ Events.EPOCH_STARTED 

‣ Events.EPOCH_COMPLETED 

‣ Events.ITERATION_STARTED 

‣ Events.ITERATION_COMPLETED 

‣ Events.EXCEPTION_RAISED

EVENTS IN IGNITE



JAX - 2018

▸ NumPy drop-in replacement with just-in-time compilation 

▸ CPU or GPU 

▸ Automatic vectorization 

▸ Uses TensorFlow’s XLA backend to compile quickly for 
GPU



TENSOR FLOW 2.0 - 2019 (FORTHCOMING)

▸ Super important changes 

▸ Eager mode will be the default 

▸ Graphs will be dynamic 

▸ Stack traces will still be ugly 

▸ Keras will be the default way of using the API 

▸ TensorFlow will look more like Chainer and PyTorch



CONVOLUTIONAL NETWORKS ARE MOVING TO THE EDGE

▸ Mobile deployment environments 

▸ Mobile GPUs 

▸ NVIDIA Jetson TX1, TX2, Xavier AGX 

▸ Low-power envelope, single GPU, shared memory 
devices for resource-constrained deployments 

▸ Jetson TX* have shared memory between CPU and 
GPU



CONVOLUTIONAL NETWORKS ARE MOVING TO THE EDGE

NVIDIA DRIVE PEGASUS IS DESIGNED FOR ROBOTAXIS.

2 VOLTA GPUS

500 WATT 
POWER 
SUPPLY

16 ARM64 CPUS



CONVOLUTIONAL NETWORKS ARE MOVING TO THE EDGE

▸ Mobile deployment environments 

▸ FPGAs - see talk by Phil James-Roxby this semester 

▸ Mobile phones 

▸ iOS: Metal Performance Shaders 

▸ Android and iOS: TensorFlow Lite 

▸ ONNX (also for general interchange/optimization)



METAL PERFORMANCE SHADERS

▸ Allows programming of convnets on platforms that 
support Apple’s Metal API 

▸ Swift and Objective-C (iOS), possibly C++ on Mac OS 

▸ Support for constructing multi-layer neural networks, as 
well as convolutional or recurrent ones 

▸ Some support for training, but appeal is inference - 
significant speed-ups reported using MPS



TENSORFLOW LITE

‣ TensorFlow support for GPUs on 

‣ iOS devices is based on Metal Performance Shaders 

‣ Android devices is based on OpenGL Compute Shaders  

‣ The GPU Delegate 

‣ Prunes unnecessary operations 

‣ Replaces some operations with faster versions 

‣ Fuses some sequences of operations (e.g. fusing batch norm affine weights into 
convolution) 

‣ Falls back to the CPU for operations that are not implemented for the GPU 

‣ Pre-trained models available 

‣ MobileNet v1 for image classification, PoseNet for pose estimation, DeepLab 
segmentation, MobileNet SSD object detection


