CSCI 5922 - NEURAL NETWORKS AND DEEP LEARNING

GRAPHS AND GRAPH CONVOLUTIONAL NETWORKS

A partial graph of the Internet circa 2005. Path length denotes latency. Color denotes top-level domain (TLD).

Explaining real-world graphs requires understanding their individual parts and components, combined with domain knowledge.

Zachary's karate club graph is a social network of
friendships among members of a karate club.
Due to a dispute, the original club disbanded and two new groups (colored green and blue) formed.

$\mathbb{V}=\mathrm{A}$ set of vertices

$\mathbb{E}=A$ set of edges

$$
\mathbb{G}=(\mathbb{V}, \mathbb{E})
$$

TASKS WITH GRAPHS

- Ranking (usually of vertices, can be of edges)
- Find x _i in R for each vertex i
, Degree centrality, eigenvector centrality, Katz centrality, PageRank
, Very loosely: unsupervised regression
- Graph Partitioning
- Partition vertices into two disjoint sets
, Example: Spectral partitioning (Fiedler method)
- Graph Clustering or Community Detection
, Separate vertices into multiple disjoint sets
- Example: Spectral modularity maximization

Very loosely: unsupervised classification

Based only on the structure of the social network before the bifurcation, can we predict with high accuracy which group someone would join?

The more important a vertex is, the more vertices it is connected to.

Degree centrality measures the importance of a vertex according to this criterion.

For any graph with n vertices, the degree of a vertex is normalized by $\mathrm{n}-1$, the maximum number of edges a vertex can have in any (simple) graph. More complex graphs, such as those with self loops, degree centrality can be > 1 .

Degree centrality of Zachary's karate club

A vertex with low degree that is connected only to high-degree vertices has the same degree centrality as a vertex with low degree connected only to low-degree vertices. Is that correct? Why or why not?

EIGENVECTOR CENTRALITY

Eigenvector centrality takes the neighborhood of a vertex into account, so low-degree vertices in a neighborhood consisting of highdegree vertices gets a high score.
\# coding: utf-8

```
import networkx as nx
import matplotli.b.pyplot as plt
import numpy as np
import scipy.linalg
```

$G=n x . k a r a t e \quad c l u b$ graph()
title $=$ "Zachary's karate club graph"
$G=n x . k a r a t e \quad c l u b$ graph(
title $=$ "Zachary's karate club graph"
A $=$ nx.adjacency matrix(G).toarray ()
$\mathrm{w}, \mathrm{v}=$ scipy.linalg.eigh(A)
leading_eigenvector = np.abs(v[:, -1])
eigcent = dict(zip (
range (len (w)),
map('\{:.2f\}'.format, leading_eigenvector)
))
nx.draw_networkx (G,
pos=nx.drawing.spring_layout(G, seed=0), labels=eigcent,
node_size=1000, node_color=leading_eigenvector, cmap='Wistia')
plt.axis('off')
plt.title("Eigenvector centrality of Zachary's karate club")
plt.show(block=False)

Eigenvector centrality of Zachary's karate club

The eigenvector centrality of vertex i is the i-th element of the leading eigenvector (the eigenvector corresponding to the largest, most positive eigenvalue).

EFFICIENTLY COMPUTING EIGENVECTOR CENTRALITY

The power method is an efficient, iterative algorithm for computing the
leading eigenvector of a square
matrix.

```
# coding: utf-8
import numpy as np
from sklearn.utils import check_random_state
def power_method(A, n_iters=100, random_state=None):
    Compute eigenvector centrality via the power method.
    """
    random_state = check_random_state(random_state)
    ev = rāndom state.uníform(0.1, 1.0, size=(A.shape[0], 1))
    for i in range(n iters):
        ev = A.TCev
        ev = ev / np.linalg.norm(ev)
    return ev[:, 0]
```

The adjacency matrix of a large graph often cannot fit into memory on a single machine. A sparse representation is usually used.

PageRank is, effectively, eigvenvector centrality for directed graphs with features to ensure the algorithm behaves well with e.g. vertices with no out-edges.

PageRank was crucial for Google early on. Eventually, it became a feature in a ranking model.

PageRank of Zachary's karate club

\# coding: utf-8
import networkx as nx
import matplotlib.pyplot as plt
def pagerank(G, alpha=0.85):
$\mathrm{M}=$ google_matrix(G, alpha)
eigenvalues, eigenvectors = np.linalg.eig(M.T)
ind = np.argmax(eigenvalues)

WHAT'S THE MOST IMPORTANT
FEATURE IN GOOGLE'S CURRENT RANKING MODEL?
\# eigenvector of largest eigenvalue is at ind, normalized
largest = np.array(eigenvectors[:, ind]).flatten().real
norm = float(largest.sum())
return dict(zip(G, map(float, largest / norm)))

Early in 2015, as Bloomberg recently reported, Google began rolling out a deep learning system called RankBrain

WHAT'S THE MOST IMPORTANT FEATURE IN GOOGLE'S CURRENT RANKING MODEL?

> To be sure, deep learning is still just a part of how Google Search works. According to Bloomberg, RankBrain helps Google deal with about 15 percent of its daily queries-the queries the system hasn't seen in the past. Basically, this machine learning engine is adept at analyzing the words and phrases that make up a search query and deciding what other words and phrases carry much the same meaning. As a result, it's better than the old rules-based system when handling brand new queries-queries Google Search has never seen before.

Al Is Transforming Search. The Rest of the Web is Next.

Wired Business, 04 February 2016

What aspect of a graph's structure is signified by the powers of its adjacency matrix?

Here $A^{\wedge} 2$ is $A=A A$, not
element-wise exponentiation

3	1	2	1	2	1
1	3	1	2	2	2
2	1	3	1	2	1
1	2	1	2	1	1
2	2	2	1	5	1
1	2	1	1	1	2

Obviously, the diagonal contains the degree of each vertex.

However, in an undirected graph with no self loops, the degree of a vertex is equivalent to the number of paths of length 2 from a given vertex back to itself.

The diagonal of $\mathrm{A}^{\wedge} \mathrm{k}$ contains the number of paths of length k from the vertex back to itself.

And the number of paths of length k from vertex i to vertex j is given by $a_{i j}^{k}$

	A^{2}				
3	1	2	1	2	1
1	3	1	2	2	2
2	1	3	1	2	1
1	2	1	2	1	1
2	2	2	1	5	1
1	2	1	1	1	2

THE TRANSITION PROBABILITY MATRIX

Dividing an adjacency matrix's rows by their sums yields a transition probability matrix P in which p_ij denotes the probability of transitioning from vertex i to vertex j on a random walk of the graph.

With sufficiently large $\mathrm{k}, \mathrm{P} \wedge \mathrm{k}$ reaches the stationary distribution, the result of which is that $P^{\wedge}\{k+1\}=P \wedge\{k\} P$. (Sufficiency of k is a function of the diameter of the graph, the longest path.) What does p_\{ij\} denote?

P

0	0.33	0	0	0.33	0.33
0.33	0	0.33	0	0.33	0
0	0.33	0	0.33	0.33	0
0	0	0.5	0	0.5	0
0.2	0.2	0.2	0.2	0	0.2
0.5	0	0	0	0.5	0

0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11

With sufficiently large $\mathrm{k}, \mathrm{P} \wedge \mathrm{k}$ reaches the stationary distribution, the result of which is that $P \wedge\{k+1\}=P \wedge\{k\} P$. (Sufficiency of k is a function of the diameter of the graph, the longest path.) p_\{ij\} denotes the probability of ending up at vertex j on an infinite random walk from vertex i.

Here $P^{\wedge} 2$ is $P=P P$, not element-wise exponentiation

DIAG(PAK) ~ EIGENVECTOR CENTRALITY

p^{k}

0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11
0.17	0.17	0.17	0.11	0.28	0.11

