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GRAPHS ARE COMMON IN NATURE AND THE HUMAN-MADE WORLD

https://en.wikipedia.org/wiki/History_of_the_Internet

A partial graph of the 
Internet circa 2005. Path 
length denotes latency. 
Color denotes top-level 
domain (TLD).

Explaining real-world 
graphs requires 
understanding their 
individual parts and 
components, combined 
with domain knowledge.

https://en.wikipedia.org/wiki/History_of_the_Internet


BASIC GRAPH NOTATION

Zachary’s karate club 
graph is a social 
network of 
friendships among 
members of a karate 
club.

Due to a dispute, the 
original club 
disbanded and two 
new groups (colored 
green and blue) 
formed.



BASIC GRAPH NOTATION

𝕍 = A set of vertices



BASIC GRAPH NOTATION

𝔼 = A set of edges



BASIC GRAPH NOTATION

𝔾 = (𝕍, 𝔼)



TASKS WITH GRAPHS

▸ Ranking (usually of vertices, can be of edges) 

▸ Find x_i in R for each vertex i 

▸ Degree centrality, eigenvector centrality, Katz centrality, PageRank 

▸ Very loosely: unsupervised regression 

▸ Graph Partitioning 

▸ Partition vertices into two disjoint sets 

▸ Example: Spectral partitioning (Fiedler method) 

▸ Graph Clustering or Community Detection 

▸ Separate vertices into multiple disjoint sets 

▸ Example: Spectral modularity maximization 

▸ Very loosely: unsupervised classification

https://en.wikipedia.org/wiki/Graph_partition#Spectral_partitioning_and_spectral_bisection
https://arxiv.org/abs/physics/0602124


WHAT MAKES A VERTEX IMPORTANT?

Based only on the structure of the social network before the bifurcation, 
can we predict with high accuracy which group someone would join?



DEGREE CENTRALITY

The more important a vertex is, 
the more vertices it is 
connected to. 

Degree centrality measures 
the importance of a vertex 
according to this criterion.

For any graph with n vertices, the 
degree of a vertex is normalized by 
n-1, the maximum number of 
edges a vertex can have in any 
(simple) graph. More complex 
graphs, such as those with self 
loops, degree centrality can be > 1. A vertex with low degree that is connected only 

to high-degree vertices has the same degree 
centrality as a vertex with low degree connected 
only to low-degree vertices. Is that correct? Why 
or why not?



ADJACENCY MATRIX

0 1 0 0 1 1
1 0 1 0 1 0
0 1 0 1 1 0
0 0 1 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

aij = {1 if (i, j) ∈ E
0 otherwise



EIGENVECTOR CENTRALITY

# coding: utf-8 

import networkx as nx 
import matplotlib.pyplot as plt 
import numpy as np 
import scipy.linalg 

G = nx.karate_club_graph() 
title = "Zachary's karate club graph" 
A = nx.adjacency_matrix(G).toarray() 
w, v = scipy.linalg.eigh(A) 
leading_eigenvector = np.abs(v[:, -1]) 
eigcent = dict(zip( 
    range(len(w)), 
    map('{:.2f}'.format, leading_eigenvector) 
)) 
nx.draw_networkx(G, 
    pos=nx.drawing.spring_layout(G, seed=0), labels=eigcent, 
    node_size=1000, node_color=leading_eigenvector, cmap='Wistia') 
plt.axis('off') 
plt.title("Eigenvector centrality of Zachary's karate club") 
plt.show(block=False) 

Eigenvector centrality takes the 
neighborhood of a vertex into 
account, so low-degree vertices in 
a neighborhood consisting of high-
degree vertices gets a high score.

The eigenvector centrality of 
vertex i is the i-th element of the 
leading eigenvector (the 
eigenvector corresponding to the 
largest, most positive 
eigenvalue).



EFFICIENTLY COMPUTING EIGENVECTOR CENTRALITY

The adjacency matrix of a large 
graph often cannot fit into memory 
on a single machine. A sparse 
representation is usually used. 

# coding: utf-8 

import numpy as np 
from sklearn.utils import check_random_state 

def power_method(A, n_iters=100, random_state=None): 
    """ 
    Compute eigenvector centrality via the power method. 
    """ 
    random_state = check_random_state(random_state) 
    ev = random_state.uniform(0.1, 1.0, size=(A.shape[0], 1)) 
    for i in range(n_iters): 
        ev = A.T@ev 
        ev = ev / np.linalg.norm(ev) 
    return ev[:, 0] 

The power method is an efficient, 
iterative algorithm for computing the 
leading eigenvector of a square 
matrix.



PAGERANK

# coding: utf-8 

import networkx as nx 
import matplotlib.pyplot as plt 

def pagerank(G, alpha=0.85): 
    M = google_matrix(G, alpha) 
    eigenvalues, eigenvectors = np.linalg.eig(M.T) 
    ind = np.argmax(eigenvalues) 
    # eigenvector of largest eigenvalue is at ind, normalized 
    largest = np.array(eigenvectors[:, ind]).flatten().real 
    norm = float(largest.sum()) 
    return dict(zip(G, map(float, largest / norm))) 

PageRank is, effectively, 
eigvenvector centrality for 
directed graphs with features to 
ensure the algorithm behaves 
well with e.g. vertices with no 
out-edges.

PageRank was crucial for Google 
early on. Eventually, it became a 
feature in a ranking model. 

WHAT’S THE MOST IMPORTANT 
FEATURE IN GOOGLE’S CURRENT 

RANKING MODEL?  



PAGERANK

WHAT’S THE MOST IMPORTANT 
FEATURE IN GOOGLE’S CURRENT 

RANKING MODEL?  

To be sure, deep learning is still just a part of how Google 
Search works. According to Bloomberg, RankBrain helps 
Google deal with about 15 percent of its daily queries—the 
queries the system hasn't seen in the past. Basically, this 
machine learning engine is adept at analyzing the words and 
phrases that make up a search query and deciding what other 
words and phrases carry much the same meaning. As a result, 
it's better than the old rules-based system when handling 
brand new queries—queries Google Search has never seen 
before.

Early in 2015, as Bloomberg recently reported, Google 
began rolling out a deep learning system called RankBrain 
that helps generate responses to search queries. As of 
October, RankBrain played a role in "a very large fraction" of 
the millions of queries that go through the search engine 
with each passing second.

AI Is Transforming Search. The Rest of the Web is Next. 

Wired Business, 04 February 2016

http://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.wired.com/2016/02/ai-is-changing-the-technology-behind-google-searches/


POWERS OF THE ADJACENCY MATRIX

0 1 0 0 1 1
1 0 1 0 1 0
0 1 0 1 1 0
0 0 1 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

3 1 2 1 2 1
1 3 1 2 2 2
2 1 3 1 2 1
1 2 1 2 1 1
2 2 2 1 5 1
1 2 1 1 1 2

A A2

What aspect of a graph’s 
structure is signified by the 
powers of its adjacency 
matrix?

Here A^2 is A = AA, not 
element-wise exponentiation



POWERS OF THE ADJACENCY MATRIX

3 1 2 1 2 1
1 3 1 2 2 2
2 1 3 1 2 1
1 2 1 2 1 1
2 2 2 1 5 1
1 2 1 1 1 2

A2
However, in an undirected graph with no self 
loops, the degree of a vertex is equivalent to the 
number of paths of length 2 from a given vertex 
back to itself. 

The diagonal of A^k contains the number of paths 
of length k from the vertex back to itself. 

And the number of paths of length k from vertex i 
to vertex j is given by  ak

ij

Obviously, the diagonal 
contains the degree of 
each vertex. 



THE TRANSITION PROBABILITY MATRIX

0 0.33 0 0 0.330.33
0.33 0 0.33 0 0.33 0

0 0.33 0 0.330.33 0
0 0 0.5 0 0.5 0

0.2 0.2 0.2 0.2 0 0.2
0.5 0 0 0 0.5 0

Dividing an adjacency matrix’s rows 
by their sums yields a transition 
probability matrix P in which p_ij 
denotes the probability of 
transitioning from vertex i to vertex j 
on a random walk of the graph.



POWERS OF THE TRANSITION PROBABILITY MATRIX

0 0.33 0 0 0.33 0.33

0.33 0 0.33 0 0.33 0

0 0.33 0 0.33 0.33 0

0 0 0.5 0 0.5 0

0.2 0.2 0.2 0.2 0 0.2

0.5 0 0 0 0.5 0

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

PkP

With sufficiently large k, P^k reaches the stationary 
distribution, the result of which is that P^{k+1} = P^{k}P. 
(Sufficiency of k is a function of the diameter of the 
graph, the longest path.) What does p_{ij} denote? DIAG(P^K) ~ EIGENVECTOR CENTRALITY

Here P^2 is P = PP, not 
element-wise exponentiation



POWERS OF THE TRANSITION PROBABILITY MATRIX

0 0.33 0 0 0.33 0.33

0.33 0 0.33 0 0.33 0

0 0.33 0 0.33 0.33 0

0 0 0.5 0 0.5 0

0.2 0.2 0.2 0.2 0 0.2

0.5 0 0 0 0.5 0

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

PkP

With sufficiently large k, P^k reaches the stationary 
distribution, the result of which is that P^{k+1} = P^{k}P. 
(Sufficiency of k is a function of the diameter of the 
graph, the longest path.) p_{ij} denotes the probability of 
ending up at vertex j on an infinite random walk from 
vertex i.

DIAG(P^K) ~ EIGENVECTOR CENTRALITY

Here P^2 is P = PP, not 
element-wise exponentiation


