
GRAPHS AND GRAPH
CONVOLUTIONAL NETWORKS

CSCI 5922 - NEURAL NETWORKS AND
DEEP LEARNING

GRAPHS ARE COMMON IN NATURE AND THE HUMAN-MADE WORLD

https://en.wikipedia.org/wiki/History_of_the_Internet

A partial graph of the
Internet circa 2005. Path
length denotes latency.
Color denotes top-level
domain (TLD).

Explaining real-world
graphs requires
understanding their
individual parts and
components, combined
with domain knowledge.

https://en.wikipedia.org/wiki/History_of_the_Internet

BASIC GRAPH NOTATION

Zachary’s karate club
graph is a social
network of
friendships among
members of a karate
club.

Due to a dispute, the
original club
disbanded and two
new groups (colored
green and blue)
formed.

BASIC GRAPH NOTATION

𝕍 = A set of vertices

BASIC GRAPH NOTATION

𝔼 = A set of edges

BASIC GRAPH NOTATION

𝔾 = (𝕍, 𝔼)

TASKS WITH GRAPHS

▸ Ranking (usually of vertices, can be of edges)

▸ Find x_i in R for each vertex i

▸ Degree centrality, eigenvector centrality, Katz centrality, PageRank

▸ Very loosely: unsupervised regression

▸ Graph Partitioning

▸ Partition vertices into two disjoint sets

▸ Example: Spectral partitioning (Fiedler method)

▸ Graph Clustering or Community Detection

▸ Separate vertices into multiple disjoint sets

▸ Example: Spectral modularity maximization

▸ Very loosely: unsupervised classification

https://en.wikipedia.org/wiki/Graph_partition#Spectral_partitioning_and_spectral_bisection
https://arxiv.org/abs/physics/0602124

WHAT MAKES A VERTEX IMPORTANT?

Based only on the structure of the social network before the bifurcation,
can we predict with high accuracy which group someone would join?

DEGREE CENTRALITY

The more important a vertex is,
the more vertices it is
connected to.

Degree centrality measures
the importance of a vertex
according to this criterion.

For any graph with n vertices, the
degree of a vertex is normalized by
n-1, the maximum number of
edges a vertex can have in any
(simple) graph. More complex
graphs, such as those with self
loops, degree centrality can be > 1. A vertex with low degree that is connected only

to high-degree vertices has the same degree
centrality as a vertex with low degree connected
only to low-degree vertices. Is that correct? Why
or why not?

ADJACENCY MATRIX

0 1 0 0 1 1
1 0 1 0 1 0
0 1 0 1 1 0
0 0 1 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

aij = {1 if (i, j) ∈ E
0 otherwise

EIGENVECTOR CENTRALITY

coding: utf-8

import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import scipy.linalg

G = nx.karate_club_graph()
title = "Zachary's karate club graph"
A = nx.adjacency_matrix(G).toarray()
w, v = scipy.linalg.eigh(A)
leading_eigenvector = np.abs(v[:, -1])
eigcent = dict(zip(
 range(len(w)),
 map('{:.2f}'.format, leading_eigenvector)
))
nx.draw_networkx(G,
 pos=nx.drawing.spring_layout(G, seed=0), labels=eigcent,
 node_size=1000, node_color=leading_eigenvector, cmap='Wistia')
plt.axis('off')
plt.title("Eigenvector centrality of Zachary's karate club")
plt.show(block=False)

Eigenvector centrality takes the
neighborhood of a vertex into
account, so low-degree vertices in
a neighborhood consisting of high-
degree vertices gets a high score.

The eigenvector centrality of
vertex i is the i-th element of the
leading eigenvector (the
eigenvector corresponding to the
largest, most positive
eigenvalue).

EFFICIENTLY COMPUTING EIGENVECTOR CENTRALITY

The adjacency matrix of a large
graph often cannot fit into memory
on a single machine. A sparse
representation is usually used.

coding: utf-8

import numpy as np
from sklearn.utils import check_random_state

def power_method(A, n_iters=100, random_state=None):
 """
 Compute eigenvector centrality via the power method.
 """
 random_state = check_random_state(random_state)
 ev = random_state.uniform(0.1, 1.0, size=(A.shape[0], 1))
 for i in range(n_iters):
 ev = A.T@ev
 ev = ev / np.linalg.norm(ev)
 return ev[:, 0]

The power method is an efficient,
iterative algorithm for computing the
leading eigenvector of a square
matrix.

PAGERANK

coding: utf-8

import networkx as nx
import matplotlib.pyplot as plt

def pagerank(G, alpha=0.85):
 M = google_matrix(G, alpha)
 eigenvalues, eigenvectors = np.linalg.eig(M.T)
 ind = np.argmax(eigenvalues)
 # eigenvector of largest eigenvalue is at ind, normalized
 largest = np.array(eigenvectors[:, ind]).flatten().real
 norm = float(largest.sum())
 return dict(zip(G, map(float, largest / norm)))

PageRank is, effectively,
eigvenvector centrality for
directed graphs with features to
ensure the algorithm behaves
well with e.g. vertices with no
out-edges.

PageRank was crucial for Google
early on. Eventually, it became a
feature in a ranking model.

WHAT’S THE MOST IMPORTANT
FEATURE IN GOOGLE’S CURRENT

RANKING MODEL?

PAGERANK

WHAT’S THE MOST IMPORTANT
FEATURE IN GOOGLE’S CURRENT

RANKING MODEL?

To be sure, deep learning is still just a part of how Google
Search works. According to Bloomberg, RankBrain helps
Google deal with about 15 percent of its daily queries—the
queries the system hasn't seen in the past. Basically, this
machine learning engine is adept at analyzing the words and
phrases that make up a search query and deciding what other
words and phrases carry much the same meaning. As a result,
it's better than the old rules-based system when handling
brand new queries—queries Google Search has never seen
before.

Early in 2015, as Bloomberg recently reported, Google
began rolling out a deep learning system called RankBrain
that helps generate responses to search queries. As of
October, RankBrain played a role in "a very large fraction" of
the millions of queries that go through the search engine
with each passing second.

AI Is Transforming Search. The Rest of the Web is Next.

Wired Business, 04 February 2016

http://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.wired.com/2016/02/ai-is-changing-the-technology-behind-google-searches/

POWERS OF THE ADJACENCY MATRIX

0 1 0 0 1 1
1 0 1 0 1 0
0 1 0 1 1 0
0 0 1 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

3 1 2 1 2 1
1 3 1 2 2 2
2 1 3 1 2 1
1 2 1 2 1 1
2 2 2 1 5 1
1 2 1 1 1 2

A A2

What aspect of a graph’s
structure is signified by the
powers of its adjacency
matrix?

Here A^2 is A = AA, not
element-wise exponentiation

POWERS OF THE ADJACENCY MATRIX

3 1 2 1 2 1
1 3 1 2 2 2
2 1 3 1 2 1
1 2 1 2 1 1
2 2 2 1 5 1
1 2 1 1 1 2

A2
However, in an undirected graph with no self
loops, the degree of a vertex is equivalent to the
number of paths of length 2 from a given vertex
back to itself.

The diagonal of A^k contains the number of paths
of length k from the vertex back to itself.

And the number of paths of length k from vertex i
to vertex j is given by ak

ij

Obviously, the diagonal
contains the degree of
each vertex.

THE TRANSITION PROBABILITY MATRIX

0 0.33 0 0 0.330.33
0.33 0 0.33 0 0.33 0

0 0.33 0 0.330.33 0
0 0 0.5 0 0.5 0

0.2 0.2 0.2 0.2 0 0.2
0.5 0 0 0 0.5 0

Dividing an adjacency matrix’s rows
by their sums yields a transition
probability matrix P in which p_ij
denotes the probability of
transitioning from vertex i to vertex j
on a random walk of the graph.

POWERS OF THE TRANSITION PROBABILITY MATRIX

0 0.33 0 0 0.33 0.33

0.33 0 0.33 0 0.33 0

0 0.33 0 0.33 0.33 0

0 0 0.5 0 0.5 0

0.2 0.2 0.2 0.2 0 0.2

0.5 0 0 0 0.5 0

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

PkP

With sufficiently large k, P^k reaches the stationary
distribution, the result of which is that P^{k+1} = P^{k}P.
(Sufficiency of k is a function of the diameter of the
graph, the longest path.) What does p_{ij} denote? DIAG(P^K) ~ EIGENVECTOR CENTRALITY

Here P^2 is P = PP, not
element-wise exponentiation

POWERS OF THE TRANSITION PROBABILITY MATRIX

0 0.33 0 0 0.33 0.33

0.33 0 0.33 0 0.33 0

0 0.33 0 0.33 0.33 0

0 0 0.5 0 0.5 0

0.2 0.2 0.2 0.2 0 0.2

0.5 0 0 0 0.5 0

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

0.17 0.17 0.17 0.11 0.28 0.11

PkP

With sufficiently large k, P^k reaches the stationary
distribution, the result of which is that P^{k+1} = P^{k}P.
(Sufficiency of k is a function of the diameter of the
graph, the longest path.) p_{ij} denotes the probability of
ending up at vertex j on an infinite random walk from
vertex i.

DIAG(P^K) ~ EIGENVECTOR CENTRALITY

Here P^2 is P = PP, not
element-wise exponentiation

