
GRAPHS AND GRAPH 
CONVOLUTIONAL NETWORKS

CSCI 5922 - NEURAL NETWORKS AND 
DEEP LEARNING



TASKS WITH GRAPHS

▸ Ranking (usually of vertices, can be of edges) 

▸ Find x_i in R for each vertex i 

▸ Degree centrality, eigenvector centrality, Katz centrality, PageRank 

▸ Very loosely: unsupervised regression 

▸ Graph Partitioning 

▸ Partition vertices into two disjoint sets 

▸ Example: Spectral partitioning (Fiedler method) 

▸ Graph Clustering or Community Detection 

▸ Separate vertices into multiple disjoint sets 

▸ Example: Spectral modularity maximization 

▸ Very loosely: unsupervised classification

https://en.wikipedia.org/wiki/Graph_partition#Spectral_partitioning_and_spectral_bisection
https://arxiv.org/abs/physics/0602124


ADJACENCY MATRIX

0 1 0 0 1 1
1 0 1 0 1 0
0 1 0 1 1 0
0 0 1 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

aij = {1 if (i, j) ∈ E
0 otherwise



DEGREE MATRIX

dij = {∑N
k=0 aik if i = j

0 otherwise
3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 2



LAPLACIAN MATRIX

3 -1 0 0 -1 -1
-1 3 -1 0 -1 0
0 -1 3 -1 -1 0
0 0 -1 2 -1 0
-1 -1 -1 -1 5 -1
-1 0 0 0 -1 2

L = D − A



SPECTRAL PARTITIONING

Networks: An Introduction, M.E.J. Newman, Section 11.5, p. 368

THE GOAL IS TO PARTITION A NETWORK WITH N NODES INTO TWO (CONNECTED) 
COMPONENTS WITH N_1 AND N_2 NODES WITH THE SMALLEST NUMBER OF 

EDGES BETWEEN THEM OF ANY PARTITION. WE WANT TO MINIMIZE THE CUT SIZE 
BETWEEN THE COMPONENTS.

NEWMAN SHOWS (BASED ON FIEDLER) THAT THE CUT SIZE IS A FUNCTION OF THE PRODUCT OF THE 
COMPONENT SIZES AND THE EIGENVALUE CORRESPONDING TO SOME EIGENVECTOR OF THE GRAPH 

LAPLACIAN.

R =
n1n2

n
λ

WE WANT TO MINIMIZE THE THIS VALUE. SINCE N, N_1, AND N_2 ARE FIXED, WE MUST MINIMIZE 
LAMBDA. THE SMALLEST EIGENVALUE IS 0, AND THE CORRESPONDING EIGENVECTOR IS 1S, SO WE 

CHOOSE THE SECOND-SMALLEST.

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650


SPECTRAL PARTITIONING

1. Calculate the eigenvector v_2 corresponding to the second-smallest eigenvector 
lambda_2 of the graph Laplacian. 

2. Sort the elements of the eigenvector in order for largest to smallest. 

3. Put the vertices corresponding to the n_1 largest elements in group 1, the rest in 
group 2, and calculate the cut size. 

4. Then put the vertices corresponding to the n_1 smallest elements in group 1, the rest 
in group 2, and recalculate the cut size. 

5. Between these two divisions of the network, choose the one that gives the smaller cut 
size.

Networks: An Introduction, M.E.J. Newman, Section 11.5, p. 369

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650


SPECTRAL PARTITIONING

# coding: utf-8 

import networkx as nx 
import matplotlib.pyplot as plt 
import numpy as np 

G = nx.karate_club_graph() 
L = nx.laplacian_matrix(G).toarray() 
w, v = np.linalg.eigh(L) 
fiedler_value = w[1] 
fiedler_vector = v[:, 1] 

# Karate club has an even number of nodes, 
# so n1 and n2 are the same. 
n1 = len(G.nodes) // 2 
n2 = len(G.nodes) - n1 

indices = np.argsort(fiedler_vector) 
smallest = indices[:n1] 
colors = ['g' if i in smallest else 'y' for i in G] 

nx.draw_networkx( 
    G, pos=nx.spring_layout(G, seed=2), node_color=colors) 
plt.title("Spectral partition of Zachary's karate club graph", y=-0.1) 
plt.axis('off') 
plt.show(block=False) 



SPECTRAL MODULARITY MAXIMIZATION

Q =
1

2m ∑
ij

(Aij −
kikj

2m )δ(ci, cj) =
1

2m ∑
ij

Bijδ(ci, cj)

Kronecker delta Group or community of node i

Bij = Aij −
kikj

2m

THE QUANTITY Q IS THE MODULARITY OF A NETWORK. IT MEASURES THE ASSORTATIVITY OF 
THE NODES IN A NETWORK. IN AN ASSORTATIVE NETWORK, LIKE NODES ARE CONNECTED TO 

LIKE NODES. IN A DISASSORTATIVE NETWORK, NODES TEND TO CONNECT TO THOSE 
DISSIMILAR FROM THEM. 

MODULARITY IS POSITIVE FOR ASSORTATIVE NETWORKS, NEGATIVE FOR DISASSORTATIVE 
NETWORKS.

NULL MODEL DEDUCTS 
FROM ANY EDGE THE 

PROBABILITY THAT IT WAS 
CREATED BY CHANCE.

{ {



SPECTRAL MODULARITY MAXIMIZATION

1. Calculate the eigenvector v_1 corresponding to the largest eigenvector lambda_1 of 
the modularity matrix B. 

2. Put vertex i into group 1 if v_1_i is positive; otherwise put it into group 2. 

3. Repeatedly apply steps 1 and 2 to the subgroups until the change in modularity 
\delta Q is not positive.

Networks: An Introduction, M.E.J. Newman, Section 11.5, p. 377-80

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650


SPECTRAL MODULARITY MAXIMIZATION

# coding: utf-8 

import networkx as nx 
import matplotlib.pyplot as plt 
import numpy as np 

G = nx.karate_club_graph() 

B = nx.modularity_matrix(G) 
w, v = np.linalg.eigh(B) 
modularity_vector = v[:, -1] 

groups = (modularity_vector > 0).astype(np.int) 
colors = ['g' if groups[i] > 0 else 'y' for i in G] 

nx.draw_networkx( 
    G, pos=nx.spring_layout(G, seed=2), node_color=colors) 
plt.title("Spectral modularity maximization of of Zachary's karate club graph", y=-0.1) 
plt.axis('off') 
plt.show(block=False)



CITATION NETWORKS

A CITATION NETWORK IS A DIRECTED 
ACYCLIC GRAPH (DAG) DERIVED FROM THE 
BIBLIOGRAPHIES OF SCIENTIFIC ARTICLES.

EACH NODE IN THIS GRAPH HAS TWO 
ATTRIBUTES: THE SUBTOPIC OF MACHINE 

LEARNING THAT THE PAPER IS ABOUT AND A 
FEATURE VECTOR DERIVED FROM THE 

ABSTRACT.



INVERSE DEGREE MATRIX

D−1 0.33 0 0 0 0 0
0 0.33 0 0 0 0
0 0 0.33 0 0 0
0 0 0 0.50 0 0
0 0 0 0 0.20 0
0 0 0 0 0 0.50



NORMALIZED ADJACENCY MATRIX

D−1A 0 0.33 0 0 0.330.33
0.33 0 0.33 0 0.33 0

0 0.33 0 0.330.33 0
0 0 0.5 0 0.5 0

0.2 0.2 0.2 0.2 0 0.2
0.5 0 0 0 0.5 0

LEFT NORMALIZATION 
ENSURES THAT ALL ROWS 

SUM TO ONE.



SYMMETRICALLY NORMALIZED ADJACENCY MATRIX

D−1AD−1 0 0.11 0 0 0.0670.167
0.11 0 0.11 0 0.067 0

0 0.1111110 0.1670.067 0
0 0 0.167 0 0.1 0

0.0670.0670.0670.1 0 0.1
0.167 0 0 0 0.1 0



GRAPH CONVOLUTIONAL NETWORKS

Semi-Supervised Classification with Graph Convolutional Networks, Kipf & Welling, 2016

Given a graph G = (V, E), a graph convolutional network takes as input
X ∈ 𝕏N×D, a feature matrix with N = |V |  and D = number of features
A ∈ 𝔸N×N, the adjacency matrix of G

The general propagation rule for a layer in a graph convolutional network is given by

H(l+1) = f(H(l), A)
with L layers and H(0) = X

https://arxiv.org/abs/1609.02907


GRAPH CONVOLUTIONAL NETWORKS

Semi-Supervised Classification with Graph Convolutional Networks, Kipf & Welling, 2016

f(H(l), A) = σ(AH(l)W(l))
Consider now the following propagation rule with a non-linearity and a separate 
weight matrix per layer.

In this rule, the neighbors of a given node are summed, but not the node itself. 
Adding the identity matrix to the adjacency matrix includes the node itself in 
outputs related to it. Normalizing the adjacency matrix (similar to mean 
centering and scaling images) should aid in optimization. From which we 
obtain

f(H(l), A) = σ(D̂− 1
2 ÂD̂− 1

2 H(l)W(l))

https://arxiv.org/abs/1609.02907


TRANSDUCTIVE LEARNING

▸ Inductive learning 

▸ Supervised learning 

▸ Build a model from a training set 

▸ Use the model to predict target of unseen (and possibly unlabeled) examples 

▸ Semi-supervised learning 

▸ Build a model from a training set and additional unlabeled examples 

▸ Use the model to predict target of unseen (and possibly unlabeled) examples 

▸ Transductive learning 

▸ Build a model from a training set and any (possibly unlabeled) examples you care about 

▸ Use the model only to obtain “predictions” of target of (possibly unlabeled) non-training examples 

▸ The model cannot be used in a predictive fashion on new, unseen examples



GRAPH CONVOLUTIONAL NETWORKS

https://github.com/tkipf/pygcn

Semi-Supervised Classification with Graph Convolutional Networks, Kipf & Welling, 2016

https://arxiv.org/abs/1609.02907


GRAPH CONVOLUTIONAL NETWORKS

https://github.com/tkipf/pygcn

CODE WALKTHROUGH, TIME PERMITTING

https://github.com/tkipf/pygcn

