You have a network with two layers of weights, \mathbf{W} and \mathbf{V}, corresponding to the first and second layers, respectively. The non-linear function through which the output of \mathbf{W} goes is the rectified linear function, $\max (0, x)$.

In pseudo-code, the forward pass of the network is as follows:

```
z1 = W x
a1 = max(0, z1)
z2 = V a1
```

The shapes and values of the weight matrices are:

$$
\begin{aligned}
& \mathbf{W} \in \mathbb{R}^{1 x 1} \\
& \mathbf{V} \in \mathbb{R}^{1 x 1} \\
& {[0.20] } \\
& {[0.40] }
\end{aligned}
$$

Given input $\mathbf{x} \in \mathbb{R}^{1 x 1}=[0.10]$ and a target of 1 , and mean squared error (LMS in our lectures) as the loss function,

- What are the values of $\mathrm{z} 1, \mathrm{a} 1, \mathrm{z} 2$?
- What is the value of the error?
- What are the gradients of \mathbf{W} and \mathbf{V} ? (The gradient of $\max (0, x)$ is 1 if $x>0,0$ otherwise.

